“Progress from a JavalJ2EE job to a career in JavalJ2ZEE"

Java/J2EE
Job Interview Companion

A JavalJ2EE technical Job Intarview gulde for

— -’
~ '-_ ~ e,
i T S L] / h
- | # it oy | | | D :I
; o "'\-\._. ! ' |'~ 2 EFEITE ; o=ae
f wnir i e o _-_.___- - - "
I'-\. BT X |' Fgrbos gl 1
- Job seekers N -
faat, Promotion seekers
Corcumuary | e - .
[l j Pro-active learners r]
- / Interviewars - { s)
\ : /
P . ; llI' \ e
I My n I| \ = §
pl hees b S ffwas D velopmard £ i
S l' ! |
— \] \ .__.'
/ \ / —
-) By =
y M o Il-_.-' .
e _____.-' ST =LA -I
K. Arulkumaran [Frntunesssais |

Convaring owar 220 intervissw guestions and answers on

Java - JIEE -SWING - Applel -Sarviets - 5P -EJB - JHNIDN - BMI - JOELC - LOAP
JME XML -RUP -UNL -STRUTS -30L
Doslgn concepts & deskgn pattoms - dUnit, Ant, VS - Dowslopmant procoss
Emarging technalegiss!irameworks like A0P, 1I0C, Hibernate, Spring. JSF ole
Angd more

Learn Java/J2EE core concepts and key areas

With

Java/J2EE Job Interview Companion

By

K.Arulkumaran
&
A.Sivayini

Technical Reviewers
Craig Malone
Stuart Watson

Arulazi Dhesiaseelan
Lara D’Albreo

Cover Design, Layout, & Editing

A.Sivayini

Acknowledgements

A. Sivayini
Mr. & Mrs. R. Kumaraswamipillai

JavalJ2EE
Job Interview Companion

Copy Right 2005-2007 ISBN 978-1-4116-6824-9

The author has made every effort in the preparation of this book to ensure the accuracy of the information. However,
information in this book is sold without warranty either expressed or implied. The author will not be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Please e-mail feedback & corrections (technical, grammatical and/or spelling) to
java-interview@hotmail.com

First Edition (220+ Q&A): Dec 2005
Second Edition (400+ Q&A): March 2007

‘ Outline

SECTION DESCRIPTION

What this book will do for you?

Motivation for this book

Key Areas index

SECTION 1 Interview questions and answers on:
Java

Fundamentals

Swing

Applet

Performance and Memory issues
Personal and Behavioral/Situational
Behaving right in an interview

Key Points

SECTION 2 Interview questions and answers on:
Enterprise Java

J2EE Overview

Servlet

JSP

JDBC / JTA

JNDI / LDAP

RMI

EJB

JMS

XML

SQL, Database, and O/R mapping
RUP & UML

Struts

Web and Application servers.

Best practices and performance considerations.
Testing and deployment.

Personal and Behavioral/Situational
Key Points

SECTION 3 | Putting it all together section.

How would you go about...?

1. How would you go about documenting your Java/J2EE application?
2. How would you go about designing a Java/J2EE application?

3. How would you go about identifying performance problems and/or memory leaks in your Java
application?

4. How would you go about minimizing memory leaks in your Java/J2EE application?
5. How would you go about improving performance of your Java/J2EE application?

6. How would you go about identifying any potential thread-safety issues in your Java/J2EE
application?

7. How would you go about identifying any potential transactional issues in your Java/J2EE

10.

11.

12.

13.

14.

15.

application?

How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE
application?

How would you go about applying the UML diagrams in your Java/J2EE project?

How would you go about describing the software development processes you are familiar with?
How would you go about applying the design patterns in your Java/J2EE application?

How would you go about designing a Web application where the business tier is on a separate
machine from the presentation tier. The business tier should talk to 2 different databases and your

design should point out the different design patterns?

How would you go about determining the enterprise security requirements for your Java/J2EE
application?

How would you go about describing the open source projects like JUnit (unit testing), Ant (build
tool), CVS (version control system) and log4J (logging tool) which are integral part of most
Java/J2EE projects?

How would you go about describing Service Oriented Architecture (SOA) and Web services?

SECTION 4

Emerging Technologies/Frameworks

Test Driven Development (TDD).

Aspect Oriented Programming (AOP).

Inversion of Control (loC) (Also known as Dependency Injection).
Annotations or attributes based programming (xdoclet etc).

Spring framework.

Hibernate framework.

EJB 3.0.

JavaServer Faces (JSF) framework.

SECTION 5

Sample interview questions ...

Java

Web Components
Enterprise

Design

General

GLOSSARY OF TERMS

RESOURCES

INDEX

Table of contents

Outline

Table of contents

What this book will do for you?

N g w

Motivation for this book

Key Areas Index

11

Java - Interview questions & answers

13

Java — Fundamentals

14

Java - Swing

69

Java — Applet

76

Java - Performance and Memory issues

78

Java — Personal and Behavioral/Situational

83

Java — Behaving right in an interview

89

Java - Key Points

91

Enterprise Java — Interview questions & answers

94

Enterprise - J2EE Overview

95

Enterprise - Servlet

Enterprise - JSP

Enterprise — JDBC & JTA

Enterprise — JNDI & LDAP

Enterprise - RMI

Enterprise — EJB 2.x

Enterprise - JMS

Enterprise - XML

Enterprise — SQL, Database, and O/R mapping

Enterprise - RUP & UML

Enterprise - Struts

Enterprise - Web and Application servers

Enterprise - Best practices and performance considerations

Enterprise — Logging, testing and deployment

Enterprise — Personal and Behavioral/Situational

Enterprise — Software development process

Enterprise — Key Points

How would you go about...?

Qo01: How would you go about documenting your Java/J2EE application? FAQ

Q02: How would you go about designing a Java/J2EE application? FAQ

108
126
145
155
159
163
180
190
197
206
214
218
222
225
228
230
233
238
239
240

Q03: How would you go about identifying performance and/or memory issues in your Java/J2EE application?_ 243

Q 04: How would you go about minimizing memory leaks in your Java/J2EE application? FAQ

Q 05: How would you go about improving performance in your Java/J2EE application? FA§

Q 06: How would you go about identifying any potential thread-safety issues in your Java/J2EE application? m _
Qo07: How would you go about identifying any potential transactional issues in your Java/J2EE application? _

244
244
245
246

Q08: How would you go about applying the Object Oriented (OO) design concepts in your Java/J2EE application?

247
Q 09: How would you go about applying the UML diagrams in your Java/J2EE project? m 249
Q10: How would you go about describing the software development processes you are familiar with? 251
Q11: How would you go about applying the design patterns in your Java/J2EE application? 253
Q12: How would you go about designing a Web application where the business tier is on a separate machine from the
presentation tier. The business tier should talk to 2 different databases and your design should point out the different
design patterns? m 286
Q13: How would you go about determining the enterprise security requirements for your Java/J2EE application? ___ 287
Q14: How would you go about describing the open source projects like JUnit (unit testing), Ant (build tool), CVS
(version control system) and log4J (logging tool) which are integral part of most Java/J2EE projects? 292
Q15: How would you go about describing Service Oriented Architecture (SOA) and Web services? 299
Emerging Technologies/Frameworks... 31
Qo01: What is Test Driven Development (TDD)? m 312
Q02: What is the point of Test Driven Development (TDD)? What do you think of TDD? 313
Q03: What is aspect oriented programming (AOP)? Do you have any experience with AOP? 313
Q 04: What are the differences between OOP and AOP? 317
Q05: What are the benefits of AOP? 317
Q 06: What is attribute or annotation oriented programming? m 317
Q 07: What are the pros and cons of annotations over XML based deployment descriptors? 318
Q 08: What is XDoclet? 319
Q09: What is inversion of control (IoC) (also known more specifically as dependency injection)? m 319
Q10: What are the different types of dependency injections? 321
Q11: What are the benefits of loC (aka Dependency Injection)? m 322
Q12: What is the difference between a service locator pattern and an inversion of control pattern? 323
Q13: Why dependency injection is more elegant than a JNDI lookup to decouple client and the service? 323
Q14: Explain Object-to-Relational (O/R) mapping? 323
Q15: Give an overview of hibernate framework? 324
Q16: Explain some of the pitfalls of Hibernate and explain how to avoid them? Give some tips on Hibernate best
practices? @ 333
Q17: Give an overview of the Spring framework? What are the benefits of Spring framework? m 334
Q18: How would EJB 3.0 simplify your Java development compared to EJB 1.x, 2.x ? m 337
Q19: Briefly explain key features of the JavaServer Faces (JSF) framework? 339
Q 20: How would the JSF framework compare with the Struts framework? How would a Spring MVC framework compare
with Struts framework? 341
Sample interview questions... 344
Java 345
Web components 345
Enterprise 345
Design 347
General 347
GLOSSARY OF TERMS 348
RESOURCES 350
INDEX 352

What this book will do for you?

Have you got the time to read 10 or more books and articles to add value prior to the interview? This book has been
written mainly from the perspective of Java/J2EE job seekers and interviewers. There are numerous books and articles
on the market covering specific topics like Java, J2EE, EJB, Design Patterns, ANT, CVS, Multi-Threading, Servlets, JSP,
emerging technologies like AOP (Aspect Oriented Programming), Test Driven Development (TDD), Dependency Injection
DI (aka IoC — Inversion of Control) etc. But from an interview perspective it is not possible to brush up on all these books
where each book usually has from 300 pages to 600 pages. The basic purpose of this book is to cover all the core
concepts and key areas, which all Java/J2EE developers, designers and architects should be conversant with to perform
well in their current jobs and to launch a successful career by doing well at interviews. The interviewer can also use this
book to make sure that they hire the right candidate depending on their requirements. This book contains a wide range of
topics relating to Java/J2EE development in a concise manner supplemented with diagrams, tables, sample codes and
examples. This book is also appropriately categorized to enable you to choose the area of interest to you.

This book will assist all Java/J2EE practitioners to become better at what they do. Usually it takes years to understand all
the core concepts and key areas when you rely only on your work experience. The best way to fast track this is to read
appropriate technical information and proactively apply these in your work environment. It worked for me and hopefully it
will work for you as well. | was also at one stage undecided whether to name this book “Javal/J2EE core concepts and
key areas” or “JavalJ2EE Job Interview Companion”. The reason | chose “Java/J2EE Job Interview Companion” is
because the core concepts and key areas discussed in this book helped me to be successful in my interviews, helped me
to survive and succeed at my work regardless what my job (junior developer, senior developer, technical lead, designer,
contractor etc) was and also gave me thumbs up in code reviews. This book also has been set out as a handy reference
guide and a roadmap for building enterprise Java applications.

| Motivation for this book

| started using Java in 1999 when | was working as a junior developer. During those two years as a permanent employee,
| pro-actively spent many hours studying the core concepts behind Java/J2EE in addition to my hands on practical
experience. Two years later | decided to start contracting. Since | started contracting in 2001, my career had a much-
needed boost in terms of contract rates, job satisfaction, responsibility etc. | moved from one contract to another with a
view of expanding my skills and increasing my contract rates.

In the last 5 years of contracting, | have worked for 5 different organizations both medium and large on 8 different
projects. For each contract | held, on average | attended 6-8 interviews with different companies. In most cases multiple
job offers were made and consequently | was in a position to negotiate my contract rates and also to choose the job |
liked based on the type of project, type of organization, technology used, etc. | have also sat for around 10 technical tests
and a few preliminary phone interviews.

The success in the interviews did not come easily. | spent hours prior to each set of interviews wading through various
books and articles as a preparation. The motivation for this book was to collate all this information into a single book,
which will save me time prior to my interviews but also can benefit others in their interviews. What is in this book has
helped me to go from just a Java/J2EE job to a career in Java/J2EE in a short time. It has also given me the job
security that ‘I can find a contract/permanent job opportunity even in the difficult job market'.

| am not suggesting that every one should go contracting but by performing well at the interviews you can be in a position
to pick the permanent role you like and also be able to negotiate your salary package. Those of you who are already in
good jobs can impress your team leaders, solution designers and/or architects for a possible promotion by demonstrating
your understanding of the key areas discussed in this book. You can discuss with your senior team members about
performance issues, transactional issues, threading issues (concurrency issues) and memory issues. In most of
my previous contracts | was in a position to impress my team leads and architects by pinpointing some of the critical
performance, memory, transactional and threading issues with the code and subsequently fixing them. Trust me it is not
hard to impress someone if you understand the key areas.

For example:

= Struts action classes are not thread-safe (Refer Q113 in Enterprise section).

= JSP variable declaration is not thread-safe (Refer Q34 in Enterprise section).

= Valuable resources like database connections should be closed properly to avoid any memory and performance
issues (Refer Q45 in Enterprise section).

= Throwing an application exception will not rollback the transaction in EJB. (Refer Q77 in Enterprise section).

The other key areas, which are vital to any software development, are a good understanding of some of key design
concepts, design patterns, and a modeling language like UML. These key areas are really worthy of a mention in your
resume and interviews.

For example:

= Know how to use inheritance, polymorphism and encapsulation (Refer Q7, Q8, Q9, and Q10 in Java section.).
= Why use design patterns? (Refer Q5 in Enterprise section).
= Whyis UML important? (Refer Q106 in Enterprise section).

If you happen to be in an interview with an organization facing serious issues with regards to their Java application
relating to memory leaks, performance problems or a crashing JVM etc then you are likely to be asked questions on
these topics. Refer Q72 — Q74 in Java section and Q123, Q125 in Enterprise section.

If you happen to be in an interview with an organization which is working on a pilot project using a different development
methodology like agile methodology etc or has just started adopting a newer development process or methodology
then you are likely to be asked questions on this key area.

If the team lead/architect of the organization you are being interviewed for feels that the current team is lacking skills in
the key areas of design concepts and design patterns then you are likely to be asked questions on these key areas.

9

Another good reason why these key areas like transactional issues, design concepts, design patterns etc are vital are
because solution designers, architects, team leads, and/or senior developers are usually responsible for conducting the
technical interviews. These areas are their favorite topics because these are essential to any software development.

Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is
to ascertain that you can code using object oriented concepts and design patterns. So | have included a coding key area
to illustrate what you need to look for while coding.

Apply OO concepts like inheritance, polymorphism and encapsulation: Refer Q10 in Java section.
Program to interfaces not to implementations: Refer Q12, Q17 in Java section.

Use of relevant design patterns: Refer Q11, Q12 in How would you go about... section.

Use of Java collections APl and exceptions correctly: Refer Q16 and Q39 in Java section.

Stay away from hard coding values: Refer Q05 in Java section.

Language

Fundamentals How many books do | have to read to Performance
understand and put together all these

key areas?

|ssues

How many years of experience
should | have to understand all these
key areas?

Specification Exception

Fundamentals Handling

Will these key areas help me
progress in my career?

Development
Will these key areas help me cut Process
quality code?
SEcurity

Transactional

Software

Design

Design

C oncepts
P atterns

|ssues

Best

P ractices

S calability

C oncurrency

|ssues

|ssues w

~,
Hakaa

This book aims to solve the above dilemma.

My dad keeps telling me to find a permanent job (instead of contracting), which in his view provides better job security but
| keep telling him that in my view in Information Technology the job security is achieved only by keeping your knowledge
and skills sharp and up to date. The 8 contract positions | held over the last 5.5 years have given me broader experience
in Java/J2EE and related technologies. It also kept me motivated since there was always something new to learn in each
assignment, and not all companies will appreciate your skills and expertise until you decide to leave. Do the following
statements sound familiar to you when you hand in your resignation or decide not to extend your contract after getting
another job offer? “Can | tempt you to come back? What can | do to keep you here?” etc. You might even think why you
waited so long. The best way to make an impression in any organizations is to understand and proactively apply and

10

resolve the issues relating to the Key Areas discussed in this book. But be a team player, be tactful and don’t be
critical of everything, do not act in a superior way and have a sense of humor.

“Technical skills must be complemented with good business and interpersonal skills.”

Describe a time when you
were faced with a stressful
situation that demonstrated
your coping skills?

Give me an example
of a time when you

set a goal and were
able to achieve it?

Development team
You

\

v Knowledge/understanding of the business.
v" Ability to communicate and interact effectively with the
business users/customers.
v' Ability to look at things from the user's perspective as
opposed to only technology perspective.
v' Ability to persuade/convince business with alternative
solutions.
v" Ability to communicate effectively with your fellow
developers, immediate and senior management.
v' Ability to work in a team as well as independently.
v Problem solving/analytical skills.
v Organizational skills.
v" Ability to cope with difficult situations like stress due to work
load, deadlines etc and manage or deal with difficult people.
v’ Being a good listener with the right attitude.

Describe a time when you had to
work with others in the organization []
to accomplish the organizational
goals?

Senior management

|ﬁ| ,ﬁl
Business users/
External customers

Immediate
management

Give me an example of a time you
motivated others? Or dealt with a
difficult person?

IMPORTANT: Technical skills alone are not sufficient for you to perform well in your interviews and progress in your
career. Your technical skills must be complemented with business skills (i.e. knowledge/understanding of the business,
ability to communicate and interact effectively with the business users/customers, ability to look at things from the users’
perspective as opposed to only from technology perspective, ability to persuade/convince business with alternative
solutions, which can provide a win/win solution from users’ perspective as well as technology perspective), ability to
communicate effectively with your fellow developers, immediate and senior management, ability to work in a team as well
as independently, problem solving/analytical skills, organizational skills, ability to cope with difficult situations like stress
due to work load, deadlines etc and manage or deal with difficult people, being a good listener with the right attitude (It is
sometimes possible to have “I know it all attitude”, when you have strong technical skills. These are discussed in “Java
— Personal” and “Enterprise Java — Personal” sub-sections with examples.

Quick Read guide: It is recommended that you go through all the questions in all the sections (all it takes is to read a
few questions & answers each day) but if you are pressed for time or would like to read it just before an interview then
follow the steps shown below:

-- Read/Browse all questions marked as “FAQ” in all four sections.
-- Read/Browse Key Points in Java and Enterprise Java sections.

11

Key Areas Index |

| have categorized the core concepts and issues into 14 key areas as listed below. These key areas are vital for any
good software development. This index will enable you to refer to the questions based on key areas. Also note that each
question has an icon next to it to indicate which key area or areas it belongs to. Additional reading is recommended for
beginners in each of the key areas.

Key Areas

Java section Enterprise Java section How Emerging
would you | Technologies
go | Frameworks
about...?
Language Q1-Q6, Q12-Q16, Q18- - Q10, Q15,
Fundamentals Q24, Q26-Q33, Q35- Q17, Q19
Q38, Q41-Q50, Q53-Q71
Specification - Q1, Q2, Q4, Q6, Q7-Q15, Q15
Fundamentals Q17-Q19, Q22, Q26-Q33,
Q35-Q38, Q41, Q42, Q44,
@ Q46-Q81, Q89-Q93, Q95-
Q97, Q99, 102, Q110,
Q112-Q115, Q118-Q119,
Q121, Q126, Q127, Q128
Design Concepts Q1, Q7-Q12, Q15, Q26, Q2, Q3, Q19, Q20, Q21, Q02, Q08, | Q3-Q13,
Q22, Q56 Q31, Q45, Q91, Q94, Q98, | Q09, Q15 Q13, Q14,
Q101, Q106, Q107, Q108, Q16, Q17,
Q109, Q111 Q18, Q20
Design Patterns Q12, Q16, Q24, Q36, Q5, Q5, Q22, Q24, Q25, Q11, Q12 Q9 -Q13
Q51, Q52, Q58, Q63, Q41, Q83, Q84, 85, Q86,
Q75 Q87, Q88, Q110, Q111,
Q116
Transactional - Q43, Q71, Q72, Q73, Q74, | Q7
Issues Q75, Q77, Q78, Q79
Concurrency Issues . Q15, Q17, Q21, Q34, Q16, Q34, Q72, Q78, Q6
Cl Q42, Q46, Q62 Q113
Performance Issues Q15, Q17,Q20-Q26, Q10, Q16, Q43, Q45, Q46, | Q3, Q5
Q46, Q62, Q72 Q72, Q83-Q88, Q93, Q97,
Q98, Q100, Q102, Q123,
Q125, Q128
Memory Issues Q26, Q34, Q37,Q38, Q45, Q93 Q3, Q4
m Q42, Q51, Q73, Q74
Scalability Issues @ Q23, Q24 Q20, Q21, Q120, Q122
Exception Handling E’ Q39, Q40 Q76, Q77
Security Q10, Q35, Q70 Q12, Q13, Q23, Q35, Q46, | Q13
[SE] Q51, @58, Q81, Q92
Best Practices Q17, Q25, Q39, Q72, Q10, Q16, Q39, Q40, Q41, | Q1,Q2
Q73 Q46, Q82, Q124, Q125

12

Q69, Q70, Q71
Q72 - Q86

Q84, Q85, Q86, Q87, Q90,
Q91, Q93, Q95, Q96, Q97,
Q98, Q100, Q101, Q102,
Q107, Q108, Q110, Q113,
Q115, Q116, Q118, Q123,
Q124, Q125, Q126, Q129,
Q130, Q131, Q133, Q134,
Q135, Q136.

Software - Q103-Q109, Q129, Q130, | Q1, Q9, Q1, Q2
Development Q132, Q136 Q10, Q14
Process
Coding’ Q05, Q10, Q12, Q14 — Q10, Q18, Q21, Q23, Q36, | Q11, Q12
Q21, Q23, Q25, Q26, Q38, Q42, Q43, Q45, Q74,
Q33, Q35, Q39, Q51, Q75, Q76, Q77, Q112,
Q52, Q55 Q114, Q127, Q128
Frequently Asked Q1, Q6, Q7, Q9, Q10, Q1, Q2, Q3, Q7, Q10, Q11, | Q1, Q2, Q1, Q86, Q7,
Questions Q12, Q13, Q14, Q15, Q12, Q13, Q16, Q19, Q22, | Q3, Q4, Q9, Q10, Q11,
Q16, Q18, Q20, Q21, Q24, Q25, Q27, Q28, Q30, | Q5, Q86, Q15, Q16,
Q22, Q23, Q27, Q28, Q31, Q32, Q34, Q35, Q36, | Q7, Q8, Q17, Q18
Q29, Q30, Q31, Q32, Q39, Q40, Q41, Q42, Q43, | Q9, Q10,
Q36, Q37, Q43, Q45, Q45, Q46, Q48, Q49, Q50, | Q12, Q15
Q46, Q48, Q51, Q52, Q52, Q53, Q61, Q63, QB5,
Q55, Q58, Q60, Q62, Q66, Q69, Q70, Q71, Q72,
X | Q63, Q64, Q67, Q68, Q73, Q76, Q77, Q82, Q83,

' Some interviewers request you to write a small program during interview or prior to getting to the interview stage. This is to ascertain
that you can code using object oriented concepts and design patterns. | have included a coding key area to illustrate what you need to
look for while coding. Unlike other key areas, the is not always shown against the question but shown above the actual section of

relevance within a question.

Java 13

ISECTION ONE|

Java - Interview questions & answers

» Language Fundamentals
» Design Concepts

» Design Patterns

= Concurrency Issues

= Performance Issues

» Memory Issues mi
Exception Handling [H

» Security [sg

» Scalability Issues si

= Coding’

< m X

»wr>m>x>
| |

[ZXe] - Frequently Asked Questions

! Unlike other key areas, the is not always shown against the question but shown above the actual content of relevance within a
question.

14

Java - Fundamentals

Java — Fundamentals

Qo01:
A01:

Give a few reasons for using Java?
Java is a fun language. Let’s look at some of the reasons:

Built-in support for multi-threading, socket communication, and memory management (automatic garbage
collection).

Object Oriented (O0).
Better portability than other languages across operating systems.
Supports Web based applications (Applet, Servlet, and JSP), distributed applications (sockets, RMI, EJB etc)

and network protocols (HTTP, JRMP etc) with the help of extensive standardized APIs (Application
Programming Interfaces).

Q 02:
A 02:

What is the main difference between the Java platform and the other software platforms?
Java platform is a software-only platform, which runs on top of other hardware-based platforms like UNIX, NT etc.

e

JAVA compiler and JVM

e

The

JAVA Code
{JAYA file)
5E
g
e Individual program is loaded
and mn in JYM

| Byte code (Class file) @

>| Java Virtual Machine (JVM) _|/

Java platform has 2 components:

Java Virtual Machine (JVM) - ‘JVM'’ is a software that can be ported onto various hardware platforms. Byte
codes are the machine language of the JVM.

Java Application Programming Interface (Java API) — set of classes written using the Java language and run
on the JVM.

Q03:
A 03:

What is the difference between C++ and Java?
Both C++ and Java use similar syntax and are Object Oriented, but:

Java does not support pointers. Pointers are inherently tricky to use and troublesome.

Java does not support multiple inheritances because it causes more problems than it solves. Instead Java
supports multiple interface inheritance, which allows an object to inherit many method signatures from
different interfaces with the condition that the inheriting object must implement those inherited methods. The
multiple interface inheritance also allows an object to behave polymorphically on those methods. [Refer Q9
and Q10 in Java section.]

Java does not support destructors but adds a finalize() method. Finalize methods are invoked by the garbage
collector prior to reclaiming the memory occupied by the object, which has the finalize() method. This means
you do not know when the objects are going to be finalized. Avoid using finalize() method to release non-
memory resources like file handles, sockets, database connections etc because Java has only a finite
number of these resources and you do not know when the garbage collection is going to kick in to release
these resources through the finalize() method.

Java does not include structures or unions because the traditional data structures are implemented as an
object oriented framework (Java Collections Framework — Refer Q16, Q17 in Java section).

Java - Fundamentals 15

= All the code in Java program is encapsulated within classes therefore Java does not have global variables or
functions.

= C++ requires explicit memory management, while Java includes automatic garbage collection. [Refer Q37 in
Java section].

Q 04: What are the usages of Java packages?

A 04: It helps resolve naming conflicts when different packages have classes with the same names. This also helps you
organize files within your project. java.io package do something related to I/O and java.net
package do something to do with network and so on. If we tend to put all .java files into a single package, as the
project gets bigger, then it would become a nightmare to manage all your files.

You can create a package as follows with package keyword, which is the first keyword in any Java program
followed by import statements. The java.lang package is imported implicitly by default and all the other packages
must be explicitly imported.

package com.xyz.client ;

import Jjava.io.File;

import java.net.URL;

Q 05: Explain Java class loaders? If you have a class in a package, what do you need to do to run it? Explain dynamic
class loading?

A 05: Class loaders are hierarchical. Classes are introduced into the JVM as they are referenced by name in a class that

is already running in the JVM. So, how is the very first class loaded? The very first class is especially loaded with
the help of static main() method declared in your class. All the subsequently loaded classes are loaded by the
classes, which are already loaded and running. A class loader creates a namespace. All JVMs include at least one
class loader that is embedded within the JVM called the primordial (or bootstrap) class loader. Now let’s look at
non-primordial class loaders. The JVM has hooks in it to allow user defined class loaders to be used in place of
primordial class loader. Let us look at the class loaders created by the JVM.

CLASS LOADER | feloadable? Explanation

Bootstrap No Loads JDK internal classes, java.* packages. (as defined in the sun.boot.class.path
(primordial) system property, typically loads rt.jar and i18n.jar)
Extensions No Loads jar files from JDK extensions directory (as defined in the java.ext.dirs system

property — usually lib/ext directory of the JRE)

System No Loads classes from system classpath (as defined by the java.class.path property, which
is set by the CLASSPATH environment variable or —classpath or —cp command line
options)

/ JVM class loaders \

Bootstrap
(primordial)

rt.jar, i18.jar

Classes loaded by Bootstrap class loader have no visibility into classes
loaded by its descendants (ie Extensions and Systems class loaders).

The classes loaded by system class loader have visibility into classes loaded
by its parents (ie Extensions and Bootstrap class loaders).

Extensions

(lib/ext)

If there were any ~ sibling class loaders they cannot see classes loaded by
each other. They can only see the classes loaded by their parent class
loader. For example Sibling1 class loader cannot see classes loaded by
Sibling?2 class loader

System
(-classpath)

Sibling1 Sibling2 Both Sibling1 and Sibling2 class loaders have visibilty into classes loaded
classloader classloader by their parent class loaders (eg: System, Extensions, and Bootstrap)

- /

Class loaders are hierarchical and use a delegation model when loading a class. Class loaders request their
parent to load the class first before attempting to load it themselves. When a class loader loads a class, the child
class loaders in the hierarchy will never reload the class again. Hence uniqueness is maintained. Classes loaded

16

Java - Fundamentals

by a child class loader have visibility into classes loaded by its parents up the hierarchy but the reverse is not true
as explained in the above diagram.

Q. What do you need to do to run a class with a main() method in a package?

Say, you have a class named “Pet” in a project folder “c:\myProject” and package named
com.xyz.client, will you be able to compile and run it as it is?

package com.xyz.client;

public class Pet {
public static void main(String[] args) {
System.out.println("I am found in the classpath");
}
}

To run > c:\myProject> java com.xyz.client.Pet

The answer is no and you will get the following exception: “Exception in thread "main" java.lang.-
NoClassDefFoundError: com/xyz/client/Pet”. You need to set the classpath. How can you do that? One of the
following ways:

1. Set the operating system CLASSPATH environment variable to have the project folder “c:\myProject”. [Shown
in the above diagram as the System —classpath class loader]

2. Set the operating system CLASSPATH environment variable to have a jar file “c:/myProject/client.jar”, which
has the Pet.class file in it. [Shown in the above diagram as the System —classpath class loader].

3. Run it with —cp or —classpath option as shown below:

c:/myProject
OR
c:\>java -classpath c:/myProject/client.jar

c:\>java -cp com.xyz.client.Pet

com.xyz.client.Pet

Important: Two objects loaded by different class loaders are never equal even if they carry the same values, which mean a
class is uniquely identified in the context of the associated class loader. This applies to singletons too, where each class
loader will have its own singleton. [Refer Q51 in Java section for singleton design pattern]

Q. Explain static vs. dynamic class loading?

Static class loading Dynamic class loading

Classes are statically loaded with Java’s
“new” operator.

class MyClass {

public static void main(String argsl]) {
Car ¢ = new Car();
}

}

Dynamic loading is a technique for programmatically invoking the functions of a
class loader at run time. Let us look at how to load classes dynamically.

Class.forName (String className); //static method which returns a Class

The above static method returns the class object associated with the class
name. The string className can be supplied dynamically at run time. Unlike the
static loading, the dynamic loading will decide whether to load the class Car or
the class Jeep at runtime based on a properties file and/or other runtime
conditions. Once the class is dynamically loaded the following method returns an
instance of the loaded class. It's just like creating a class object with no
arguments.

class.newlnstance (); /A non-static method, which creates an instance of a
/lclass (i.e. creates an object).

Jeep myJeep = null ;

/ImyClassName should be read from a .properties file or a Constants class.
Il stay away from hard coding values in your program.
String myClassName = "au.com.Jeep" ;

Class vehicleClass = Class.forName(myClassName) ;

myJeep = (Jeep) vehicleClass.newlnstance();
myJeep.setFuelCapacity(50);

A NoClassDefFoundException is
thrown if a class is referenced with
Java’s “new” operator (i.e. static loading)
but the runtime system cannot find the

referenced class.

A ClassNotFoundException is thrown when an application tries to load in a
class through its string name using the following methods but no definition for the
class with the specified name could be found:

] The forName(..) method in class - Class.
L] The findSystemClass(..) method in class - ClassLoader.
. The loadClass(..) method in class - ClassLoader.

Java - Fundamentals 17

Q. What are “static initializers” or “static blocks with no function names”? When a class is loaded, all blocks
that are declared static and don’t have function name (i.e. static initializers) are executed even before the
constructors are executed. As the name suggests they are typically used to initialize static fields.

public class StaticInitializer {
public static final int A = 5;
public static final int B; //note that it is not = public static final int B = null;
//note that since B is final, it can be initialized only once.

//Static initializer block, which is executed only once when the class is loaded.

static {
if (A == 5)
B = 10;
else
B = 5;
}
public StaticInitializer(){} //constructor is called only after static initializer block

}
The following code gives an Output of A=5, B=10.
public class Test {

System.out.println ("A =" + StaticInitializer.A + ", B =" + StaticInitializer.B);

}

Q 06:

A 06:

What is the difference between constructors and other regular methods? What happens if you do not provide a
constructor? Can you call one constructor from another? How do you call the superclass’s constructor?

Constructors Regular methods

Constructors must have the same name as the class | Regular methods can have any name and can be called any number of
name and cannot return a value. The constructors | times. E.g. for a Pet.class.

are called only once per creation of an object while
regular methods can be called many times. E.g. for a | public void Pet(){} // regular method has a void return type.
Pet.class

method name is shown starting with an uppercase to

public Pet() {} // constructor differentiate a constructor from a regular method. Better naming
convention is to have a meaningful name starting with a lowercase
like:

public void createPet(){} // regular method has a void return type

Q. What happens if you do not provide a constructor? Java does not actually require an explicit constructor in
the class description. If you do not include a constructor, the Java compiler will create a default constructor in the
byte code with an empty argument. This default constructor is equivalent to the explicit “Pet()}}". If a class includes
one or more explicit constructors like “public Pet(int id)” or “Pet(){}" etc, the java compiler does not create the
default constructor “Pet(){}".

Q. Can you call one constructor from another? Yes, by using this() syntax. E.g.

public Pet (int id) {
this.id = id; // “this” means this object

}

public Pet (int id, String type) {
this (id); // calls constructor public Pet (int id)
this.type = type; // ”this” means this object

Q. How to call the superclass constructor? If a class called “SpecialPet” extends your “Pet” class then you can
use the keyword “super” to invoke the superclass’s constructor. E.g.

public SpecialPet (int id) {
super (id) ; //must be the very first statement in the constructor.

}

To call a regular method in the super class use: “super.myMethod();”. This can be called at any line. Some
frameworks based on JUnit add their own initialization code, and not only do they need to remember to invoke

18

Java - Fundamentals

their parent's setup() method, you, as a user, need to remember to invoke theirs after you wrote your initialization
code:

public class DBUnitTestCase extends TestCase {
public void setUp() {
super.setUp () ;
// do my own initialization
}
}

public void cleanUp () throws Throwable
{

try {

. // Do stuff here to clean up your object(s).

}

catch (Throwable t) {}

finally({

super.cleanUp(); //clean up your parent class. Unlike constructors
// super.regularMethod() can be called at any line.

Q07:
A 07:

What are the advantages of Object Oriented Programming Languages (OOPL)? m

The Object Oriented Programming Languages directly represent the real life objects like Car, Jeep, Account,
Customer etc. The features of the OO programming languages like polymorphism, inheritance and
encapsulation make it powerful. [Tip: remember pie which, stands for Polymorphism, Inheritance and
Encapsulation are the 3 pillars of OOPL]

Q 08:
A 08:

How does the Object Oriented approach improve software development?
The key benefits are:

* Re-use of previous work: using implementation inheritance and object composition.

* Real mapping to the problem domain: Objects map to real world and represent vehicles, customers,
products etc: with encapsulation.

= Modular Architecture: Objects, systems, frameworks etc are the building blocks of larger systems.

The increased quality and reduced development time are the by-products of the key benefits discussed above.
If 90% of the new application consists of proven existing components then only the remaining 10% of the code
have to be tested from scratch.

Q 09:

A 09:

How do you express an ‘is a’ relationship and a ‘has a’ relationship or explain inheritance and composition? What
is the difference between composition and aggregation? m

The ‘is a’ relationship is expressed with inheritance and ‘has a’ relationship is expressed with composition. Both
inheritance and composition allow you to place sub-objects inside your new class. Two of the main techniques for
code reuse are class inheritance and object composition.

/ Inheritance [is a] Vs Composition [has a] \
Building isa is a [House is a Building] has a [House has a Bathroom)]
class Building{ class House {
7N hasa | .. Bathroom room = new Bathroom() ;
}
public void getTotMirrors(){
class House extends Building{ room.getNoMirrors();
Bathroom
House ;o }

N\ })
Inheritance is uni-directional. For example House is a Building. But Building is not a House. Inheritance uses
extends key word. Composition: is used when House has a Bathroom. It is incorrect to say House is a

Java - Fundamentals

Bathroom. Composition simply means using instance variables that refer to other objects. The class House will

have an instance variable, which refers to a Bathroom object.

Q. Which one to favor, composition or inheritance? The guide is that inheritance should be only used when

subclass ‘is a’ superclass.

= Don’t use inheritance just to get code reuse. If there is no ‘is a’ relationship then use composition for code
reuse. Overuse of implementation inheritance (uses the “extends” key word) can break all the subclasses, if

the superclass is modified.

= Do not use inheritance just to get polymorphism. If there is no ‘is a' relationship and all you want is
polymorphism then use interface inheritance with composition, which gives you code reuse (Refer Q10

in Java section for interface inheritance).

What is the difference between aggregation and composition?

Aggregation

weaker relationship.

Aggregation is an association in which one class
belongs to a collection. This is a part of a whole
relationship where a part can exist without a whole.
a line item is a whole and product is a
part. If a line item is deleted then corresponding
product need not be deleted. So aggregation has a

| Composition

relationship.

Composition is an association in which one class belongs to a
collection. This is a part of a whole relationship where a part
cannot exist without a whole. If a whole is deleted then all parts are
deleted. An order is a whole and line items are parts.
If an order is deleted then all corresponding line items for that
order should be deleted. So composition has a stronger

Q 10: What do you mean by polymorphism, inheritance, encapsulation, and dynamic binding? @ m

A 10: Polymorphism — means the ability of a single variable of a given type to be used to reference objects of
different types, and automatically call the method that is specific to the type of object the variable references. In a
nutshell, polymorphism is a bottom-up method call. The benefit of polymorphism is that it is very easy to add new
classes of derived objects without breaking the calling code (i.e. getTotArea() in the sample code shown
below) that uses the polymorphic classes or interfaces. When you send a message to an object even though you
don’t know what specific type it is, and the right thing happens, that’s called polymorphism. The process used by
object-oriented programming languages to implement polymorphism is called dynamic binding. Let us look at

some sample code to demonstrate polymorphism:

Sample code:

/lclient or calling code
double dim = 5.0; //ie 5 meters radius or width
List listShapes = new ArrayList(20);

Shape s = new Circle();
listShapes.add(s); //add circle

s = new Square();
listShapes.add(s); //add square

getTotArea (listShapes,dim); //returns 78.5+25.0=103.5

/ILater on, if you decide to add a half circle then define

/la HalfCircle class, which extends Circle and then provide an
/larea(). method but your called method getTotArea(...) remains
/lsame.

s = new HalfCircle();
listShapes.add(s); //add HalfCircle

getTotArea (listShapes,dim); //returns 78.5+25.0+39.25=142.75

/** called method: method which adds up areas of various
** shapes supplied to it.
)
public double getTotArea(List listShapes, double dim){
Iterator it = listShapes.iterator();
double totalArea = 0.0;
/Nloop through different shapes
while(it.hasNext()) {
Shape s = (Shape) it.next();
totalArea += s.area(dim); lIpolymorphic method call

return totalArea ;

For example: given a base
class/interface Shape,
polymorphism allows the
programmer to define
different area(double
dim1) methods for any
number of derived classes
such as Circle, Square etc.
No matter what shape an
object is, applying the area
method to it will return the
right results.

Later on HalfCicle can be
added without breaking
your called code i.e.
method getTotalArea(...)

<<abstract>>
Shape

+area() : double

Circle

Square

+area() : double

+area() : double

L%

HalfCircle

+area() : double

Depending on what the
shape is, appropriate
area(double dim) method
gets called and calculated.

Circle > area is 78.5sqm
Square > area is 25sqm
HalfCircle > areais 39.25
sqm

«interface»
Shape
+area() : double

Circle

Square

+area() : double

+area() : double

HalfCircle

+area() : double

20 Java - Fundamentals

Inheritance - is the inclusion of behavior (i.e. methods) and state (i.e. variables) of a base class in a derived class so
that they are accessible in that derived class. The key benefit of Inheritance is that it provides the formal mechanism for
code reuse. Any shared piece of business logic can be moved from the derived class into the base class as part of
refactoring process to improve maintainability of your code by avoiding code duplication. The existing class is called the
superclass and the derived class is called the subclass. Inheritance can also be defined as the process whereby one
object acquires characteristics from one or more other objects the same way children acquire characteristics from their
parents. There are two types of inheritances:

m Implementation inheritance (aka class inheritance): You can extend an application’s functionality by reusing
functionality in the parent class by inheriting all or some of the operations already implemented. In Java, you can only
inherit from one superclass. Implementation inheritance promotes reusability but improper use of class inheritance can
cause programming nightmares by breaking encapsulation and making future changes a problem. With implementation
inheritance, the subclass becomes tightly coupled with the superclass. This will make the design fragile because if you
want to change the superclass, you must know all the details of the subclasses to avoid breaking them. So when using
implementation inheritance, make sure that the subclasses depend only on the behavior of the superclass, not on
the actual implementation. For example in the above diagram, the subclasses should only be concerned about the
behavior known as area() but not how it is implemented.

@ Interface inheritance (aka type inheritance): This is also known as subtyping. Interfaces provide a mechanism for
specifying a relationship between otherwise unrelated classes, typically by specifying a set of common methods each
implementing class must contain. Interface inheritance promotes the design concept of program to interfaces not to
implementations. This also reduces the coupling or implementation dependencies between systems. In Java, you can
implement any number of interfaces. This is more flexible than implementation inheritance because it won'’t lock you into
specific implementations which make subclasses difficult to maintain. So care should be taken not to break the
implementing classes by modifying the interfaces.

Which one to use? Prefer interface inheritance to implementation inheritance because it promotes the design concept of
coding to an interface and reduces coupling. Interface inheritance can achieve code reuse with the help of object
composition. If you look at Gang of Four (GoF) design patterns, you can see that it favors interface inheritance to
implementation inheritance.

Let’'s assume that savings account and term deposit account | Let’s look at an interface inheritance code sample, which makes use
have a similar behavior in terms of depositing and | of composition for reusability. In the following example the methods
withdrawing money, so we will get the super class to | deposit(...) and withdraw(...) share the same piece of code in
implement this behavior and get the subclasses to reuse this | AccountHelper class. The method calculatelnterest(...) has its specific
behavior. But saving account and term deposit account | implementation in its own class.

have specific behavior in calculating the interest.

Super class Account has reusable code as methods public interface Account {
deposit (double amount) and withdraw (double amount). public abstract double calculatelnterest(double amount);
public abstract void deposit(double amount);
public abstract class Account { public abstract void withdraw(double amount);
public void deposit (double amount) { }
System.out.printin("depositing " + amount);
} Code to interface so that the implementation can change.
public void withdraw (double amount) { public interface AccountHelper {
System.out.printin ("withdrawing " + amount); public abstract void deposit (double amount);
} public abstract void withdraw (double amount);
}

public abstract double calculatelnterest(double amount);
} class AccountHelperlmpl has reusable code as methods deposit
(double amount) and withdraw (double amount).

public class AccountHelperlmpl implements AccountHelper {
public void deposit(double amount) {
System.out.printin("depositing " + amount);

public class SavingsAccount extends Account {

public double calculatelnterest (double amount) {

/I calculate interest for SavingsAccount }
t t*0.03;
) return amoun ‘ public void withdraw(double amount) {
System.out.printin("withdrawing " + amount);
public void deposit (double amount) { }
super.deposit (amount); // get code reuse
/I do something else }

}

public void withdraw (double amount) { public class SavingsAccountimpl implements Account {

Java - Fundamentals 21

super.withdraw (amount); // get code reuse
/I do something else
}
}

public class TermDepositAccount extends Account {

public double calculatelnterest (double amount) {
/I calculate interest for SavingsAccount
return amount * 0.05;

}

public void deposit(double amount) {
super.deposit (amount); // get code reuse
/I do something else

}

public void withdraw(double amount) {
super.withdraw (amount); // get code reuse
/I do something else
}
}

/I composed helper class (i.e. composition).
AccountHelper helper = new AccountHelperimpl ();

public double calculatelnterest (double amount) {
/I calculate interest for SavingsAccount
return amount * 0.03;

}

public void deposit (double amount) {
helper.deposit(amount); // code reuse via composition
}

public void withdraw (double amount) {
helper.withdraw (amount); // code reuse via composition
}

}
public class TermDepositAccountimpl implements Account {

/I composed helper class (i.e. composition).
AccountHelper helper = new AccountHelperimpl ();

public double calculatelnterest (double amount) {
/lcalculate interest for SavingsAccount
return amount * 0.05;

}

public void deposit (double amount) {
helper.deposit (amount) ; // code reuse via composition
}

public void withdraw (double amount) {
helper.withdraw (amount) ; // code reuse via composition
}

The Test class:

public class Test {
public static void main(String|[] args) {
Account acc1 = new SavingsAccountimpl();
acc1.deposit(50.0);

Account acc2 = new TermDepositAccountimpl();
acc2.deposit(25.0);

acc1.withdraw(25);
acc2.withdraw(10);

double cal1 = acc1.calculatelnterest(100.0);
double cal2 = acc2.calculatelnterest(100.0);

System.out.printin("Savings --> " + cal1);
System.out.printin("TermDeposit --> " + cal2);
}
}

The output:

depositing 50.0
depositing 25.0
withdrawing 25.0
withdrawing 10.0
Savings --> 3.0
TermDeposit --> 5.0

Q. Why would you prefer code reuse via composition over inheritance? Both the approaches make use of
polymorphism and gives code reuse (in different ways) to achieve the same results but:

= The advantage of class inheritance is that it is done statically at compile-time and is easy to use. The disadvantage of
class inheritance is that because it is static, implementation inherited from a parent class cannot be changed at run-

22 Java - Fundamentals

time. In object composition, functionality is acquired dynamically at run-time by objects collecting references to other
objects. The advantage of this approach is that implementations can be replaced at run-time. This is possible because
objects are accessed only through their interfaces, so one object can be replaced with another just as long as they
have the same type. the composed class AccountHelperimpl can be replaced by another more
efficient implementation as shown below if required:

public class EfficientAccountHelperImpl implements AccountHelper ({
public void deposit (double amount) {
System.out.println ("efficient depositing " + amount);

}

public void withdraw (double amount) {
System.out.println ("efficient withdrawing " + amount);
}
}

= Another problem with class inheritance is that the subclass becomes dependent on the parent class implementation.
This makes it harder to reuse the subclass, especially if part of the inherited implementation is no longer desirable and
hence can break encapsulation. Also a change to a superclass can not only ripple down the inheritance hierarchy to
subclasses, but can also ripple out to code that uses just the subclasses making the design fragile by tightly coupling
the subclasses with the super class. But it is easier to change the interface/implementation of the composed class.

Due to the flexibility and power of object composition, most design patterns emphasize object composition over
inheritance whenever it is possible. Many times, a design pattern shows a clever way of solving a common problem
through the use of object composition rather then a standard, less flexible, inheritance based solution.

Encapsulation — refers to keeping all the related members (variables and methods) together in an object. Specifying
member variables as private can hide the variables and methods. Objects should hide their inner workings from the
outside view. Good encapsulation improves code modularity by preventing objects interacting with each other in
an unexpected way, which in turn makes future development and refactoring efforts easy.

Sample code

Class MyMarks {
private int vmarks = 0;
private String name;

Member
variables are

public void setMarks(int mark) encapsulated,

throws MarkException { so that they
if(mark > 0) can only be
this.vmarks = mark; accessed via
else { encapsulating
throw new MarkException("No negative methods.

Values");
}
}

public int getMarks(){
return vmarks;
}

I/lgetters and setters for attribute name goes here.

Being able to encapsulate members of a class is important for security and integrity. We can protect variables from
unacceptable values. The sample code above describes how encapsulation can be used to protect the MyMarks object
from having negative values. Any modification to member variable “vmarks” can only be carried out through the setter
method setMarks(int mark). This prevents the object “MyMarks” from having any negative values by throwing an
exception.

Q 11: What is design by contract? Explain the assertion construct?

A 11: Design by contract specifies the obligations of a calling-method and called-method to each other. Design by
contract is a valuable technique, which should be used to build well-defined interfaces. The strength of this
programming methodology is that it gets the programmer to think clearly about what a function does, what pre
and post conditions it must adhere to and also it provides documentation for the caller. Java uses the assert
statement to implement pre- and post-conditions. Java’'s exceptions handling also support design by contract
especially checked exceptions (Refer Q39 in Java section for checked exceptions). In design by contract in
addition to specifying programming code to carrying out intended operations of a method the programmer also
specifies:

23

Java - Fundamentals

Preconditions — This is the part of the contract the calling-method must agree to. Preconditions specify the
conditions that must be true before a called method can execute. Preconditions involve the system state and the
arguments passed into the method at the time of its invocation. If a precondition fails then there is a bug in the
calling-method or calling software component.

On public methods On non-public methods

Preconditions on public methods are enforced by explicit checks
that throw particular, specified exceptions. You should not use
assertion to check the parameters of the public methods but
can use for the non-public methods. Assert is inappropriate
because the method guarantees that it will always enforce the
argument checks. It must check its arguments whether or not
assertions are enabled. Further, assert construct does not throw
an exception of a specified type. It can throw only an
AssertionError.

public void setRate(int rate) {
if(rate <= 0 || rate > MAX_RATE)X
throw new lllegalArgumentException(“Invalid rate - ” + rate);

setCalculatedRate(rate);

You can use assertion to check the parameters of the
non-public methods.

private void setCalculatedRate(int rate) {
assert (rate > 0 && rate < MAX_RATE) : rate;
/[calculate the rate and set it.

}

Assertions can be disabled, so programs must not
assume that assert construct will be always executed:

/\Wrong:
/lif assertion is disabled, “pilotJob” never gets removed
assert jobsAd.remove(pilotJob);

} lICorrect:
boolean pilotJobRemoved = jobsAd.remove(pilotJob);
assert pilotJobRemoved;

Postconditions — This is the part of the contract the called-method agrees to. What must be true after a
method completes successfully. Postconditions can be used with assertions in both public and non-public
methods. The postconditions involve the old system state, the new system state, the method arguments and the
method’s return value. If a postcondition fails then there is a bug in the called-method or called software
component.

public double calcRate(int rate) {
if (rate <= 0 || rate > MAX RATE) {
throw new IllegalArgumentException (“Invalid rate !!!

Y ;
7

}
//logic to calculate the rate and set it goes here

assert this.evaluate(result) < 0 : this; //message sent to AssertionError on failure

return result;

}

Class invariants - what must be true about each instance of a class? A class invariant as an internal invariant
that can specify the relationships among multiple attributes, and should be true before and after any method
completes. If an invariant fails then there could be a bug in either calling-method or called-method. There is
no particular mechanism for checking invariants but it is convenient to combine all the expressions required for
checking invariants into a single internal method that can be called by assertions. For example if you have a class,
which deals with negative integers then you define the isNegative() convenient internal method:

class NegativeInteger {
Integer value = new Integer (-1); //invariant
//constructor
public Negativelnteger (Integer int) {
//constructor logic goes here
assert isNegative();

}

// rest of the public and non-public methods goes here. public methods should call

// assert isNegative(); prior to its return

// convenient internal method for checking invariants.
// Returns true if the integer value is negative

private boolean isNegative () {
return value.intValue() < 0 ;

}

24

Java - Fundamentals

The isNegative() method should be true before and after any method completes, each public method and
constructor should contain the following assert statement immediately prior to its return.

assert isNegative();

Explain the assertion construct? The assertion statements have two forms as shown below:

assert Expressionl;
assert Expressionl : ExpressionZ2;

Where:

. Expression1 - is a boolean expression. If the Expression1 evaluates to false, it throws an AssertionError without any
detailed message.

L] Expression2 - if the Expression1 evaluates to false throws an AssertionError with using the value of the Expression2 as
the error’s detailed message.

If you are using assertions (available from JDK1.4 onwards), you should supply the JVM argument to
enable it by package name or class name.

java -ea[:packagename...|:classname] or java -enableassertions[:packagename...|:classname]
java —ea:Account

Q12:
A12:

What is the difference between an abstract class and an interface and when should you use them?

In design, you want the base class to present only an interface for its derived classes. This means, you don’t want
anyone to actually instantiate an object of the base class. You only want to upcast to it (implicit upcasting, which
gives you polymorphic behavior), so that its interface can be used. This is accomplished by making that class
abstract using the abstract keyword. If anyone tries to make an object of an abstract class, the compiler prevents
it.

The interface keyword takes this concept of an abstract class a step further by preventing any method or function
implementation at all. You can only declare a method or function but not provide the implementation. The class,
which is implementing the interface, should provide the actual implementation. The interface is a very useful and
commonly used aspect in OO design, as it provides the separation of interface and implementation and
enables you to:

= Capture similarities among unrelated classes without artificially forcing a class relationship.

= Declare methods that one or more classes are expected to implement.

= Reveal an object's programming interface without revealing its actual implementation.

= Model multiple interface inheritance in Java, which provides some of the benefits of full on multiple
inheritances, a feature that some object-oriented languages support that allow a class to have more than one

superclass.
Abstract class Interface
Have executable methods and abstract methods. Have no implementation code. All methods are abstract.
Can only subclass one abstract class. A class can implement any number of interfaces.
/ Diamond problem & use of interface \
Shape <<Interface>>
ShapelF
Circle Square CircleOnSquare
Circle Square C/
<<Interface>> <<Interface>>
CirclelF SquarelF
CircleOnSquare
Multiple interface inheritance in JAVA

\ No multiple inheritance in JAVA /

Java - Fundamentals 25

Q. When to use an abstract class?: In case where you want to use implementation inheritance then it is
usually provided by an abstract base class. Abstract classes are excellent candidates inside of application
frameworks. Abstract classes let you define some default behavior and force subclasses to provide any specific
behavior. Care should be taken not to overuse implementation inheritance as discussed in Q10 in Java section.

Q. When to use an interface?: For polymorphic interface inheritance, where the client wants to only deal with a
type and does not care about the actual implementation use interfaces. If you need to change your design
frequently, you should prefer using interface to abstract. Coding to an interface reduces coupling and
interface inheritance can achieve code reuse with the help of object composition. The Spring
framework’s dependency injection promotes code to an interface principle. Another justification for using interfaces
is that they solve the ‘diamond problem’ of traditional multiple inheritance as shown in the figure. Java does not
support multiple inheritance. Java only supports multiple interface inheritance. Interface will solve all the
ambiguities caused by this ‘diamond problem’.

Strategy design pattern lets you swap new algorithms and processes into your program without
altering the objects that use them. Strategy design pattern: Refer Q11 in How would you go about... section.

Q 13: Why there are some interfaces with no defined methods (i.e. marker interfaces) in Java? m
A 13: The interfaces with no defined methods act like markers. They just tell the compiler that the objects of the classes
implementing the interfaces with no defined methods need to be treated differently. java.io.Serializable
(Refer Q23 in Java section), java.lang.Cloneable, java.util.EventListener etc. Marker interfaces are also known as
“tag” interfaces since they tag all the derived classes into a category based on their purpose.
Q 14: When is a method said to be overloaded and when is a method said to be overridden?
A14:
Method Overloading Method Overriding
Overloading deals with multiple methods in the same class | Overriding deals with two methods, one in the parent class and
with the same name but different method signatures. the other one in the child class and has the same name and
signatures.
class MyClass {
public void getinvestAmount(int rate) {...} class BaseClass{
public void getinvestAmount(int rate) {...}
public void getinvestAmount(int rate, long principal) }
{ ...}
} class MyClass extends BaseClass {
public void getinvestAmount(int rate) { ...}
Both the above methods have the same method names | }
but different method signatures, which mean the methods
are overloaded. Both the above methods have the same method names and
the signatures but the method in the subclass MyClass
overrides the method in the superclass BaseClass.
Overloading lets you define the same operation in | Overriding lets you define the same operation in different
different ways for different data. ways for different object types.
Q 15: What is the main difference between an ArrayList and a Vector? What is the main difference between HashMap
and Hashtable? What is the difference between a stack and a queue? FAQ
A 15:

Vector / Hashtable ArrayList / HashMap

Original classes before the introduction of Collections | So if you don’'t need a thread safe collection, use the ArrayList or
API. Vector & Hashtable are synchronized. Any | HashMap. Why pay the price of synchronization unnecessarily at
method that touches their contents is thread-safe. the expense of performance degradation.

Q. So which is better? As a general rule, prefer ArrayList/HashMap to Vector/Hashtable. If your application is a
multithreaded application and at least one of the threads either adds or deletes an entry into the collection
then use new Java collections API‘s external synchronization facility as shown below to temporarily synchronize
your collections as needed:

Map myMap = Collections.synchronizedMap (myMap) ; // single lock for the entire map
List myList = Collections.synchronizedList (myList); // single lock for the entire list

26

Java - Fundamentals

If you are using J2SE5, you should use the new ‘java.util.concurrent’ package for improved
performance because the concurrent package collections are not governed by a single synchronized lock as
shown above. The “java.util.concurrent” package collections like ConcurrentHashMap is threadsafe and at the
same time safely permits any number of concurrent reads as well as tunable number of concurrent writes. The
“java.util.concurrent” package also provides an efficient scalable thread-safe non-blocking FIFO queue like
ConcurrentLinkedQueue.

The “java.util.concurrent” package also has classes like CopyOnWriteArrayList, CopyOnWrite-
ArraySet, which gives you thread safety with the added benefit of immutability to deal with data that changes
infrequently. The CopyOnWriteArrayList behaves much like the ArrayList class, except that when the list is
modified, instead of modifying the underlying array, a new array is created and the old array is discarded. This
means that when a caller gets an iterator (i.e. copyOnWriteArrayListRef.iterator ()), which internally
holds a reference to the underlying CopyOnWriteArrayList object’s array, which is immutable and therefore can be
used for traversal without requiring either synchronization on the list copyOniwriteArrayListRef or need to
clone() the copyOnWriteArrayListRef list before traversal (i.e. there is no risk of concurrent modification) and
also offers better performance.

_Array __List/ Stack etc

Java arrays are even faster than using an ArrayList/Vector
and perhaps therefore may be preferable if you know the
size of your array upfront (because arrays cannot grow
as Lists do).

ArrayList/VVector are specialized data structures that internally
uses an array with some convenient methods like add(..),
remove(...) etc so that they can grow and shrink from their initial
size. ArrayList also supports index based searches with
indexOf(Object obj) and lastindexOf(Object obj) methods.

In an array, any item can be accessed.

These are more abstract than arrays and access is restricted.
For example, a stack allows access to only last item inserted.

First item to be inserted is the first one to be removed.

Queue<E> (added in J2SE 5.0) Stack

Allows access to only last item inserted.

This mechanism is called First In First Out (FIFO).

An item is inserted or removed from one end called the “top” of
the stack. This is called Last In First Out (LIFO) mechanism.

Placing an item in the queue is called “enqueue or
insertion” and removing an item from a queue is called
“dequeue or deletion”. Pre J2SE 5.0, you should write your
own Queue class with enqueue() and dequeue() methods
using an ArrayList or a LinkedList class.

J2SE 5.0 has a java.util.Queue<E> interface.

Placing the data at the top is called “pushing” and removing an
item from the top is called “popping”. If you want to reverse
“XYZ" > ZYX, then you can use a java.util.Stack

Q 16: Explain the Java Collections Framework? FAQ)

A 16: The key interfaces used by the collections framework are List, Set and Map. The List and Set extends the
Collection interface. Should not confuse the Collection interface with the Collections class which is a utility class.

Set (HashSet , TreeSet)

List (ArrayList, LinkedList, Vector etc)

A Set is a collection with unique elements and prevents
duplication within the collection. HashSet and TreeSet are
implementations of a Set interface. A TreeSet is an
ordered HashSet, which implements the SortedSet
interface.

A Listis a collection with an ordered sequence of elements
and may contain duplicates. ArrayList, LinkedList and
Vector are implementations of a List interface. (i.e. an index
based)

The Collections API also supports maps, but within a hierarchy distinct from the Collection interface. A Map is an
object that maps keys to values, where the list of keys is itself a collection object. A map can contain duplicate
values, but the keys in a map must be distinct. HashMap, TreeMap and Hashtable are implementations of a Map
interface. A TreeMap is an ordered HashMap, which implements the SortedMap interface.

Q. How to implement collection ordering? SortedSet and SortedMap interfaces maintain sorted order. The
classes, which implement the Comparable interface, impose natural order. By implementing Comparable, sorting
an array of objects or a collection (List etc) is as simple as:

Arrays.sort (myArray) ;

Collections.sort (myCollection) ; // do not confuse “Collections” utility class with the

W

// “Collection” interface without an “s

Java - Fundamentals

27

For classes that don’t implement Comparable interface, or when one needs even more control over ordering based on
multiple attributes, a Comparator interface should be used.

Comparable interface Comparator interface

The “Comparable” allows itself to compare with another
similar object (i.e. A class that implements Comparable
becomes an object to be compared with). The method
compareTo() is specified in the interface.

The Comparator is used to compare two different objects. The
following method is specified in the Comparator interface.

public int compare (Object ol, Object 02)

Many of the standard classes in the Java library like String,
Integer, Date, File etc implement the Comparable interface

to give the class a "Natural Ordering". String
class uses the following methods:

public int compareTo (0)
public int compareToIgnoreCase (str)

You could also implement your own method in your
own class as shown below:

...imports
public class Pet implements Comparable {

int petld;
String petType;

public Pet(int argPetld, String argPetType) {
petld = argPetld;
this.petType = argPetType;

public int compareTo(Object o) {
Pet petAnother = (Pet)o;

/Inatural alphabetical ordering by type

/lif equal returns 0, if greater returns +ve int,

/lif less returns -ve int

return this.petType.compareTo(petAnother.petType);

public static void main(String[] args) {
List list = new ArrayList();
list.add(new Pet(2, "Dog"));
list.add(new Pet(1, "Parrot"));
list.add(new Pet(2, "Cat"));

Collections.sort(list); / sorts using compareTo method

for (Iterator iter = list.iterator(); iter.hasNext();) {
Pet element = (Pet) iter.next();
System.out.printin(element);
}
}

public String toString() {
return petType;

}

}
Output: Cat, Dog, Parrot

You can have more control by writing your Comparator class. Let us
write a Comparator for the Pet class shown on the left. For most cases
natural ordering is fine as shown on the left but say we require a
special scenario where we need to first sort by the “petld” and then by
the “petType”. We can achieve this by writing a “Comparator” class.

...imports
public class PetComparator implements Comparator, Serializable{

public int compare(Object 01, Object 02) {
int result = 0;

Pet pet = (Pet)o1;
Pet petAnother = (Pet)o2;

/luse Integer class's natural ordering
Integer pld = new Integer(pet.getPetld());
Integer pAnotherld = new Integer(petAnother.getPetld());

result = pld.compareTo(pAnotherld);

/[if ids are same compare by petType
if(result == 0) {
result= pet.getPetType().compareTo
(petAnother.getPetType());

return result;

}

public static void main(String[] args) {
List list = new ArrayList();
list.add(new Pet(2, "Dog"));
list.add(new Pet(1, "Parrot"));
list.add(new Pet(2, "Cat"));

Collections.sort(list, new PetComparator());

for (Iterator iter = list.iterator(); iter.hasNext();){
Pet element = (Pet) iter.next();
System.out.printin(element);
}
}
}

Output: Parrot, Cat, Dog.

Note: some methods are not shown for brevity.

Important: The ordering imposed by a java.uti.Comparator “myComp” on a set of elements “mySet” should be

consistent with equals() method, which means

then
then

if compare (ol,02)

== 0
if compare (ol,02) ! 0

ol.equals (02)
ol.equals (02)

should be true.
should be false.

If a comparator “myComp” on a set of elements “mySet” is inconsistent with equals() method, then SortedSet or
SortedMap will behave strangely and is hard to debug. [For example| if you add two objects o1, 02 to a TreeSet

28 Java - Fundamentals

(implements SortedSet) such that o1.equals(02) == true and compare(o1,02) != 0 the second add operation will return
false and will not be added to your set because o1 and 02 are equivalent from the TreeSet’s perspective. It is always
a good practice and highly recommended to keep the Java API documentation handy and refer to it as required while
coding. Please refer to java.util.Comparator interface API for further details.

Design pattern: Q. What is an Iterator? An Iterator is a use once object to access the objects stored in a collection.
Iterator design pattern (aka Cursor) is used, which is a behavioral design pattern that provides a way to access
elements of a collection sequentially without exposing its internal representation.

Q. Why do you get a ConcurrentModificationException when using an iterator?

Problem: The java.util Collection classes are fail-fast, which means that if one thread changes a collection while another
thread is traversing it through with an iterator the iterator.hasNext() or iterator.next() call will throw
ConcurrentModificationException. Even the synchronized collection wrapper classes SynchronizedMap and
SynchronizedList are only conditionally thread-safe, which means all individual operations are thread-safe but compound
operations where flow of control depends on the results of previous operations may be subject to threading issues.

Collection<String> myCollection = new ArraylList<String>(10);

myCollection.add ("123");
myCollection.add ("456") ;
myCollection.add ("789");

for (Iterator it = myCollection.iterator(); it.hasNext();) {
String myObject = (String)it.next();
System.out.println (myObject) ;
if (someConditionIsTrue) {
myCollection.remove (myObject); //can throw ConcurrentModificationException in single as
//well as multi-thread access situations.

}

Solutions 1-3: for multi-thread access situation:

Solution 1: You can convert your list to an array with list.toArray() and iterate on the array. This approach is not
recommended if the list is large.

Solution 2: You can lock the entire list while iterating by wrapping your code within a synchronized block. This approach
adversely affects scalability of your application if it is highly concurrent.

Solution 3: If you are using JDK 1.5 then you can use the ConcurrentHashMap and CopyOnWriteArrayList classes,
which provide much better scalability and the iterator returned by ConcurrentHashMap.iterator() will not throw
ConcurrentModificationException while preserving thread-safety.

Solution 4: for single-thread access situation:

Use:
it.remove () ; // removes the current object via the Iterator “it” which has a reference to
// your underlying collection “myCollection”. Also can use solutions 1-3.

Avoid:
myCollection.remove (myObject); // avoid by-passing the Iterator. When it.next() is called, can throw the exception
/| ConcurrentModificationException

If you had used any Object to Relational (OR) mapping frameworks like Hibernate, you may have encountered this
exception “ConcurrentModificationException” when you tried to remove an object from a collection such as a java.util Set
with the intention of deleting that object from the underlying database. This exception is not caused by Hibernate but
rather caused by your java.util.lterator (i.e. due to your it .next () call). You can use one of the solutions given above.

Q. What is a list iterator?

The java.util.Listlterator is an iterator for lists that allows the programmer to traverse the list in either direction (i.e.
forward and or backward) and modify the list during iteration.

Java - Fundamentals 29

/ JAVA collection framework \

<interface>

<interface>

- <interface> <interface>

AbstractList Set AbstractMap
Abstract <interface>
Sequential <interface> SortedMap
List <interface> SortedSet Identity
Random _HashMap
LinkedList Access E
HashMap
implements A ‘ ArrayList
Vector . .
<interface> ﬁ - inked
[k | e

o

(Diagram sourced from: http://www.wilsonmar.com/1arrays.htm)

What are the benefits of the Java Collections Framework? Collections framework provides flexibility, performance,
and robustness.

= Polymorphic algorithms — sorting, shuffling, reversing, binary search etc.

= Set algebra - such as finding subsets, intersections, and unions between objects.

= Performance - collections have much better performance compared to the older Vector and Hashtable classes with
the elimination of synchronization overheads.

] Thread-safety - when synchronization is required, wrapper implementations are provided for temporarily
synchronizing existing collection objects. For J2SE 5.0 use java.util.concurrent package.

] Immutability - when immutability is required wrapper implementations are provided for making a collection
immutable.

= Extensibility - interfaces and abstract classes provide an excellent starting point for adding functionality and
features to create specialized object collections.

Q. What are static factory methods?

Some of the above mentioned features like searching, sorting, shuffling, immutability etc are achieved with
java.util.Collections class and java.util.Arrays utility classes. The great majority of these implementations are provided
via static factory methods in a single, non-instantiable (i.e. private constrctor) class. Speaking of static factory
methods, they are an alternative to creating objects through constructors. Unlike constructors, static factory methods are
not required to create a new object (i.e. a duplicate object) each time they are invoked (e.g. immutable instances can be
cached) and also they have a more meaningful names like valueOf, instanceOf, asList etc.

Instead of:

String[] myArray = {"Java", "J2EE", "XML", "JNDI"};

for (int i = 0; i < myArray.length; i++) {
System.out.println (myArrayl[i]);

}

You can use:
String[] myArray = {"Java", "J2EE", "XML", "JNDI"};
System.out.println (Arrays.asList (myArray)); //factory method Arrays.asList (..)

The following static factory method (an alternative to a constructor) example converts a boolean primitive
value to a Boolean wrapper object.

public static Boolean valueOf (boolean b) {
return (b ? Boolean.TRUE : Boolean.FALSE)
}

30 Java - Fundamentals

Q 17: What are some of the best practices relating to Java collection?
A1T:
= Use ArrayList, HashMap etc as opposed to Vector, Hashtable etc, where possible to avoid any
synchronization overhead. Even better is to use just arrays where possible. If multiple threads concurrently
access a collection and at least one of the threads either adds or deletes an entry into the collection,
then the collection must be externally synchronized. This is achieved by:

Map myMap Collections.synchronizedMap (myMap); //conditional thread-safety
List myList Collections.synchronizedList (myList); //conditional thread-safety
/I use java.util.concurrent package for J2SE 5.0 Refer Q16 in Java section under ConcurrentModificationException

= Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). This is because Collection
classes like ArrayList, HashMap etc must grow periodically to accommodate new elements. But if you have a
very large array, and you know the size in advance then you can speed things up by setting the initial size
appropriately.

HashMaps/Hashtables need to be created with sufficiently large capacity to minimize
rehashing (which happens every time the table grows). HashMap has two parameters initial capacity and
load factor that affect its performance and space requirements. Higher load factor values (default load factor
of 0.75 provides a good trade off between performance and space) will reduce the space cost but will
increase the lookup cost of myMap.get(...) and myMap.put(...) methods. When the number of entries in the
HashMap exceeds the current capacity * loadfactor then the capacity of the HasMap is roughly doubled by
calling the rehash function. It is also very important not to set the initial capacity too high or load factor too
low if iteration performance or reduction in space is important.

= Program in terms of interface not implementation: For example you might decide a LinkedList is the
best choice for some application, but then later decide ArrayList might be a better choice for performance

reason.

Use:
List list = new ArrayList (100); // program in terms of interface & set the initial capacity.

Instead of:
ArrayList list = new ArrayList();

= Return zero length collections or arrays as opposed to returning null: Returning null instead of zero
length collection (use Collections. EMPTY_SET, Collections.EMPTY_LIST, Collections. EMPTY_MAP) is more
error prone, since the programmer writing the calling method might forget to handle a return value of null.

= Immutable objects should be used as keys for the HashMap: Generally you use a java.lang.Integer or
a java.lang.String class as the key, which are immutable Java objects. If you define your own key class then it
is a best practice to make the key class an immutable object (i.e. do not provide any setXXX () methods
etc). If a programmer wants to insert a new key then he/she will always have to instantiate a new object (i.e.
cannot mutate the existing key because immutable key object class has no setter methods). Refer Q20 in
Java section under “Q. Why is it a best practice to implement the user defined key class as an
immutable object?”

= Encapsulate collections: In general collections are not immutable objects. So care should be taken not
to unintentionally expose the collection fields to the caller.

Avoid where possible Better approach

The following code snippet exposes the Set “setCars” | This approach prevents the caller from directly using
directly to the caller. This approach is riskier because | the underlying variable “cars”.

the variable “cars” can be modified unintentionally.
public class CarYard{

public class CarYard{

/... private Set<Car> cars = new HashSet<Car>();
private Set<Car> cars = new HashSet<Car>(); ...

public void addCar(Car car) {
/lexposes the cars to the caller cars.add(car);

public Set<Car> getCars() {

return cars;
} public void removeCar(Car car) {

cars.remove(car);
/lexposes the cars to the caller }
public void setCars(Set<Car> cars) {

Java -

Fundamentals 31

this.cars = cars;

}

...
}

public Set<Car> getCars() {
/luse factory method from the Collections
return Collections.unmodifiableSet (cars);
}
}

= Avoid storing unrelated or different types of objects into same collection: This is analogous to
storing items in pigeonholes without any labeling. To store items use value objects or data objects (as
opposed to storing every attribute in an ArrayList or HashMap). Provide wrapper classes around your
collections API classes like ArrayList, HashMap etc as shown in better approach column. Also where
applicable consider using composite design pattern, where an object may represent a single object or a
collection of objects. Refer Q61 in Java section for UML diagram of a composite design pattern. If you are
using J2SE 5.0 then make use of “generics”. Refer Q55 in Java section for generics.

Avoid where possible Better approach

The code below is hard to maintain and understand by
others. Also gets more complicated as the requirements
grow in the future because we are throwing different
types of objects like Integer, String etc into a list just
based on the indices and it is easy to make mistakes
while casting the objects back during retrieval.

List myOrder = new ArrayList()
ResultSetrs = ...
While (rs.hasNext()) {

List lineltem = new ArrayList();

lineltem.add (new Integer(rs.getint(“itemld”)));
lineltem.add (rs.getString(“description”));

;1'1')'/Order.add(lineltem);
}

return myOrder;
Example 2:
List myOrder = new ArrayList(10);

/[create an order
OrderVO header = new OrderVO();
header.setOrderld(1001);

/ladd all the line items

LineltemVO line1 = new LineltemVO();
line1.setLineltemld(1);

LineltemVO line2 = new LineltemVO();
Line2.setLineltemld(2);

List lineltems = new ArrayList();
lineltems.add(line1);
lineltems.add(line2);

/Ito store objects
myOrder.add(order);// index 0 is an OrderVO object
myOrder.add(lineltems);//index 1 is a List of line items

/Ito retrieve objects
myOrder.get(0);
myOrder.get(1);

Above approaches are bad because disparate objects
are stored in the lineltem collection in example-1 and
example-2 relies on indices to store disparate objects.
The indices based approach and storing disparate
objects are hard to maintain and understand because
indices are hard coded and get scattered across the

When storing items into a collection define value objects as shown
below: (VO is an acronym for Value Object).

public class LineltemVO {
private int itemld;
private String productName;

public int getLineltemld(){return accountld ;}
public int getAccountName(){return accountName;}

public void setLineltemld(int accountld ¥
this.accountld = accountld

/limplement other getter & setter methods

Now let’s define our base wrapper class, which represents an order:

public abstract class Order {
int orderld;
List lineltems = null;

public abstract int countLineltems();

public abstract boolean add(LineltemVO itemToAdd);
public abstract boolean remove(LineltemVO itemToAdd);
public abstract lterator getlterator();

public int getOrderld(){return this.orderld; }

}

Now a specific implementation of our wrapper class:

public class OverseasOrder extends Order {
public OverseasOrder(int inOrderld) {
this.lineltems = new ArrayList(10);
this.orderld = inOrderld;

}

public int countLineltems() { //logic to count }

public boolean add(LineltemVO itemToAdd){
.../ladditional logic or checks
return lineltems.add(itemToAdd);

}

public boolean remove(LineltemVO itemToAdd){
return lineltems.remove(itemToAdd);
}

public Listlterator getlterator(){ return lineltems.lterator();}

}

Now to use:

Order myOrder = new OverseasOrder(1234) ;

32 Java -

Fundamentals

code. If an index position changes for some reason, then
you will have to change every occurrence, otherwise it
breaks your application.

The above coding approaches are analogous to storing
disparate items in a storage system without proper
labeling and just relying on its grid position.

LineltemVO item1 = new LineltemVO();
Iltem1.setltemld(1);
Iltem1.setProductName(“BBQ”);

LineltemVO item2 = new LineltemVO();
ltem1.setltemld(2);
Iltem1.setProductName(“Outdoor chair”);

/lto add line items to order
myOrder.add(item1);
myOrder.add(item2);

Q. How can you code better without nested loops? Avoid nested loops where possible (e.g. for loop within
another for loop etc) and instead make use of an appropriate java collection.

How to avoid nested loops with Java collection classes

e

Code to test if there are duplicate values in an array.

™

Avoid where possible -- nested loops

Better approach -- using a collections class like a Set

public class NestedLoops {
private static String[] strArray ={"Cat", "Dog", "Tiger", "Lion", "Lion"};

public class NonNestedLoop {
private static String[] strArray = {"Cat", "Dog", "Tiger", "Lion", "Lion"};

public static boolean isThereDuplicateUsingLoop() {
boolean duplicateFound = false;
int loopCounter = 0;
for (inti=0; i < strArray.length; i++) {
String str = strArray[i];
int countDuplicate = 0;
for (intj = 0; j < strArray.length; j++) {
String str2 = strArray(j];
if(str.equalslgnoreCase(str2)) {
countDuplicatet++;

}

if(countDuplicate > 1) {
duplicateFound = true;
System.out.printin("duplicate found for " + str);

}

loopCounter++;
}Wlend of inner nested for loop

if(duplicateFound) {
break;

Wlend of outer for loop

System.out.printin("looped " + loopCounter + " times");
return duplicateFound;

}

public static boolean isThereDuplicateUsingCollection() {
boolean duplicateFound = false;
int loopCounter = 0;
Set setValues = new HashSet(10); // create a set

for (inti = 0; i < strArray.length; i++) {
String str = strArray(i];

duplicateFound = true;
System.out.printin("duplicate found for " + str);

setValues.add(str); // add the value to the set
loopCounter++;

if(duplicateFound) {
break;
}

}I'end of for loop

System.out.printin("looped " + loopCounter + " times");
return duplicateFound;

}

public static void main(String[] args) {
isThereDuplicateUsingCollection();

if(setValues.contains(str)) { // check if already has this value

}

public static void main(String[] args) {)

} isThereDuplicateUsingLoop(); output:
) duplicate found for Lion

looped 5 times

output: The approach using a Set is more readable and easier to
duplicate found for Lion maintain and performs slightly better. If you have an array with
looped 20 times 100 items then nested loops will loop through 9900 times and

utilizing a collection class will loop through only 100 times.

v

Java - Fundamentals 33

Q 18: What is the difference between “==" and equals(...) method? What is the difference between shallow comparison
and deep comparison of objects? h

A 18: The questions Q18, Q19, and Q20 are vital for effective coding. These three questions are vital when you are
using a collection of objects using a java.util.Set of persistable Hibernate objects etc. It is easy to
implement these methods incorrectly and consequently your program can behave strangely and also is hard to
debug. So, you can expect these questions in your interviews.

== [shallow comparison] equals() [deep comparison]

The == returns true, if the variable reference points to The equals() - returns the results of running the equals() method of a

the same object in memory. This is a “shallow user supplied class, which compares the attribute values. The equals()

comparison”. method provides “deep comparison” by checking if two objects are
logically equal as opposed to the shallow comparison provided by the
operator ==.

If equals() method does not exist in a user supplied class then the
inherited Object class's equals() method is run which evaluates if the
references point to the same object in memory. The object.equals() works
just like the "==" operator (i.e shallow comparison).

Overriding the Object class may seem simple but there are many ways to
get it wrong, and consequence can be unpredictable behavior. Refer Q19
in Java section.

/ == (identity) \ / equals() method \

\ If (@==b) 2> returns false \ If (a.equals(b)) > returns true
(both objects have same attribute values of id=1
and name="Cat”)

N/

Pet a = new Pet();

Pet a

new Pet()!

Pet Object
Pet b = new Pet();

new Pet();

Pet Object Pet b

If (@==b) 2> returns true (a,b points to the

Pet Object
same object, after a is set to b with a=b) ke

If (a.equals(b)) returns true

a= a=b {}
a a
b o

b @
%jedj \ Pet Objecu

String assignment with the “new” operator follow the same rule as == and equals() as mentioned above.

String str = new String (“ABC”); //Wrong. Avoid this because a new String instance
//is created each time it is executed.

Variation to the above rule:

The “literal” String assignment is shown below, where if the assignment value is identical to another String assignment
value created then a new String object is not created. A reference to the existing String object is returned.

String str = “ABC”; //Right because uses a single instance rather than
//creating a new instance each time it is executed.

Let us look at an example:

34 Java - Fundamentals

public class StringBasics {
public static void main(String[] args) {

String sl = new String("A"); //not recommended, use String sl = "A"
String s2 = new String("A"); //not recommended, use String s2 = "A"
//standard: follows the == and equals() rule like plain java objects.
if (sl == s2) { //shallow comparison
System.out.println ("references/identities are equal"); //never reaches here
}
if (sl.equals(s2)) { //deep comparison
System.out.println("values are equal"); // this line is printed
}
//variation: does not follow the == and equals rule
String s3 = "A"; //goes into a String pool.
String s4 = "A"; //refers to String already in the pool.
if (s3 == s4) { //shallow comparison
System.out.println("references/identities are equal"); //this line is printed
}
if (s3.equals(s4)) { //deep comparison
System.out.println("values are equal"); //this line is also printed

}
}

String class is designed with Flyweight design pattern. When you create a String constant as shown
above in the variation, (i.e. String s3 = “A”, s4= “A”), it will be checked to see if it is already in the String pool. If it is in the
pool, it will be picked up from the pool instead of creating a new one. Flyweights are shared objects and using them can
result in substantial performance gains.

Q. What is an intern() method in the String class?

A pool of Strings is maintained by the String class. When the intern() method is invoked equals(...) method is invoked to
determine if the String already exist in the pool. If it does then the String from the pool is returned. Otherwise, this String
object is added to the pool and a reference to this object is returned. For any two Strings s1 & s2, s1l.intern() ==
s2.intern() only if s1.equals(s2) is true.

Q 19: What are the non-final methods in Java Object class, which are meant primarily for extension?

A 19: The non-final methods are equals(), hashCode(), toString(), clone(), and finalize(). The other methods like
wait(), notify(), notifyAll(), getClass() etc are final methods and therefore cannot be overridden. Let us look at
these non-final methods, which are meant primarily for extension (i.e. inheritance).

Important: The equals() and hashCode() methods prove to be very important, when objects implementing these two
methods are added to collections. If implemented incorrectly or not implemented at all then your objects stored in a
collection like a Set, List or Map may behave strangely and also is hard to debug.

Method Explanation

name

equals() This method checks if some other object passed to it as an argument is equal the object in which this method is
invoked. It is easy to implement the equals() method incorrectly, if you do not understand the contract. The contract
can be stated in terms of 6 simple principles as follows:

E)nuebtlr?c?d with 1. o1.equals(o1) = which means an Object (e.g. 01) should be equal to itself. (aka Reflexive).
access 2. o1.equals(02) if and only 02.equals(o1) & So it will be incorrect to have your own class say “MyPet” to have a

modifier equals() method that has a comparison with an Object of class “java.lang.String” class or with any other built-in
Java class. (aka Symmetric) .

3. o1l.equals(02) && 02.equals(03) implies that 01.equals(03) as well = It means that if the first object o1 equals to
the second object 02 and the second object 02 is equal to the third object 03 then the first object o1 is equal to
the third object 03. For example, imagine that X, Y and Z are 3 different classes. The classes X and Y both
implement the equals() method in such a way that it provides comparison for objects of class X and class Y. Now
if you decide to modify the equals() method of class Y so that it also provides equality comparison with class Z,
then you will be violating this principle because no proper equals comparison exist for class X and class Z
objects. So, if two objects agree that they are equal and follow the above mentioned symmetric principle, then

Java - Fundamentals 35

one of them cannot decide to have a similar contract with another object of different class. (aka Transitive)

4. o1l.equals(02) returns the same as long as o1 and 02 are unmodified > if two objects are equal, they must
remain equal as long as they are not modified. Similarly, if they are not equal, they must remain non-equal as long
as they are not modified. (aka Consistent)

5. lo1.equals(null) & which means that any instantiable object is not equal to null. So if you pass a null as an
argument to your object o1, then it should return false. (aka null comparison)

6. o1l.equals(o2) implies o1.hashCode() == 02.hashCode() -> This is very important. If you define a equals()
method then you must define a hashCode() method as well. Also it means that if you have two objects that are
equal then they must have the same hashCode, however the reverse is not true (i.e. if two objects have the same
hashCode does not mean that they are equal). So, If a field is not used in equals(), then it must not be used in
hashCode() method. (equals() and hashCode() relationship)

public class Pet {
int id;
String name;

public boolean equals (Object obj) {
if (this == obj) return true; // if both are referring to the same object

if ((obj == null) || (obj.getClass() != this.getClass())) {
return false;

}

Pet rhs = (Pet) obj;
return id == rhs.id && (name == rhs.name ||
(name != null && name.equals(rhs.name)));

}

//hashCode () method must be implemented here.

}

hashCode() | This method returns a hashCode() value as an Integer and is supported for the benefit of hashing based
java.util.Collection classes like Hashtable, HashMap, HashSet etc. If a class overrides the equals() method, it
must implement the hashCode() method as well. The general contract of the hashCode() method is that:

me;lhod with 1. Whenever hashCode() method is invoked on the same object more than once during an execution of a Java

public program, this method must consistently return the same integer result. The integer result need not remain

accde.?_s consistent from one execution of the program to the next execution of the same program.

modifier

2. If two objects are equal as per the equals() method, then calling the hashCode() method in each of the two
objects must return the same integer result. So, If a field is not used in equals(), then it must not be used in
hashCode() method.

3. If two objects are unequal as per the equals() method, each of the two objects can return either two different
integer results or same integer results (i.e. if 2 objects have the same hashCode() result does not mean that they
are equal, but if two objects are equal then they must return the same hashCode() result).

public class Pet {
int id;

String name;
public boolean equals (Object obj) {
//as shown above.
}
//both fields id & name are used in equals(), so both fields must be used in
//hashCode () as well.
public int hashCode () {
int hash 9;
hash = (31 * hash) + id;
hash = (31 * hash) + (null == name ? 0 : name.hashCode());
return hash;
}
}
toString() The toString() method provided by the java.lang.Object returns a string, which consists of the class name

36

Java - Fundamentals

followed by an “@” sign and then unsigned hexadecimal representation of the hashcode, for example
Pet@162b91. This hexadecimal representation is not what the users of your class want to see.
method with
public Providing your toString() method makes your class much more pleasant to use and it is recommended
access that all subclasses override this method. The toString() method is invoked automatically when your object
modifier is passed to printin(), assert() or the string concatenation operator (+).
public class Pet ({
int id;
String name;
public boolean equals (Object obj) {
//as shown above.
}
public int hashCode() {
//as shown before
}
public String toString() {
StringBuffer sb = new StringBuffer():;
sb.append (“id=") .append (id) ;
sb.append (%, name=") .append (name) ;
return sb.toString();
}
}
clone() You should override the clone() method very judiciously. Implementing a properly functioning clone method is complex
and it is rarely necessary. You are better off providing some alternative means of object copying (refer Q26 in Java
section) or simply not providing the capability. A better approach is to provide a copy constructor or a static factory
method with method in place of a constructor.
protected /Iconstructor
accggs public Pet (Pet petToCopy) {
modifier
}
/Istatic factory method
public static Pet newlInstance (Pet petToCopy) {
}
The clone() method can be disabled as follows:
public final Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException();
}
finalize() Unlike C++ destructors, the finalize() method in Java is unpredictable, often dangerous and generally unnecessary.
Use try{} finally{} blocks as discussed in Q32 in Java section & Q45 in Enterprise section. The finalize() method should
method only be used in rare instances as a safety net or to terminate non-critical native resources. If you do happen to call the
with finalize() method in some rare instances then remember to call the super.finalize() as shown below:
pmﬁeded protected void finalize() throws Throwable {
access try(
modifier //finalize subclass state
}
finally {
super.finalize();
}
}

Q 20: When providing a user defined key class for storing ob'ei:ts in the HashMaps or Hashtables, what methods do you

have to provide or override (i.e. method overriding)?

Pico|

A 20: You should override the equals() and hashCode() methods from the Object class. The default implementation of
the equals() and hashcode(), which are inherited from the java.lang.Object uses an object instance’s memory
location (e.g. MyObject@6c60f2ea). This can cause problems when two instances of the car objects have the
same color but the inherited equals() will return false because it uses the memory location, which is different for

Java - Fundamentals

37

the two instances. Also the toString() method can be overridden to provide a proper string representation of your

object.
/ hashCode() & equals() methods \
myMap (HashMap)

Map myMap = new HashMap(); Because often

two or more
. : 345678965 76854676 keys can hash

storing value: Ke:r:'r;dex e (hash value for (hash value for to the same
myMap.put(“John”, “Sydney”); ’\ 7 _array ‘o‘e “John”) “Sam”) hash value the

" Cyy 2.9 79'\(‘0“ HashMap

/ aive 0 maintains a

O\ . linked list of
4.0 List of keys / / keys that were
(\ oo “John” etc “Sam” etc mapped to the

06\\‘(;‘{\0“ ition and USepp list of keys which hash to the same hash

retrieving value: ’5;\“9&9 ey this k:‘ is p,-eser\t same hash value 345678065. value.
i the
ugh Vi o if i '
A oop thr© cthod List of values
myMap.get(“John”); 5. he equa\s() m “Sydney” etc “Melbourne”
us, List of values for the etc
€s corresponding list of keys

If the key is not found (i.e. equals() method returns false for all
items in the list), then it assumes that the key is not present in the
HashMap “myMap”.

Note: It is simplified for clarity. myMap.containsKey(“John”) also calls hashCode() & equals() methods. If two keys are equal then they must have
the same hashCode() value, But if two keys have the same hashCode() value does not mean that they are equal.

Y

Q. What are the primary considerations when implementing a user defined key?

e Ifaclass overrides equals(), it must override hashCode().

e If 2 objects are equal, then their hashCode values must be equal as well.

o Ifafield is not used in equals(), then it must not be used in hashCode().

e Ifitis accessed often, hashCode() is a candidate for caching to enhance performance.

e ltis a best practice to implement the user defined key class as an immutable (refer Q21) object.

Q. Why it is a best practice to implement the user defined key class as an immutable object?

Problem: As per the code snippet shown below if you use a mutable user defined class “UserKey” as a HashMap
key and subsequently if you mutate (i.e. modify via setter method e.g. key.setName (“Sam”)) the key after the
object has been added to the HashMap then you will not be able to access the object later on. The original key
object will still be in the HashMap (i.e. you can iterate through your HashMap and print it — both prints as “Sam” as

opposed to “John” & Sam) but you cannot access it with map.get (key) or querying it

with

map.containsKey (key) will return false because the key “John” becomes “Sam” in the “List of keys” at the key

index “345678965” if you mutate the key after adding. These types of errors are very hard to trace and fix.

Map myMap = new HashMap (10) ;

//add the key “John”

UserKey key = new UserKey (“John”); //Assume UserKey class is mutable

myMap.put (key, “Sydney”);

//now to add the key “Sam”

key.setName (“Sam”); // same key object is mutated instead of creating a new instance.

// This line modifies the key value “John” to “Sam” in the “List of keys”

// as shown in the diagram above. This means that the key “John” cannot
// accessed. There will be two keys with “Sam” in positions with hash
// values 345678965 and 76854676.

myMap.put (key, “Melbourne”) ;

be

myMap.get (new UserKey (“John”)); // key cannot be accessed. The key hashes to the same position
// 345678965 in the “Key index array” but cannot be found in the “List of keys”

Solution: Generally you use a java.lang.Integer or a java.lang.String class as the key, which are immutable Java
objects. If you define your own key class then it is a best practice to make the key class an immutable object (i.e.
do not provide any setXXX() methods in your key class. e.g. no setName (..) method in the UserKey class). If a
programmer wants to insert a new key then he/she will always have to instantiate a new object (i.e. cannot mutate

the existing key because immutable key object class has no setter methods).

Java - Fundamentals

38

Map myMap = new HashMap (10) ;

//add the key “John”

UserKey keyl = new UserKey (“John”) ;
myMap.put (keyl, “Sydney”);

//Assume UserKey is immutable

//add the key “Sam”
UserKey key2 = new UserKey (“Sam”) ;
myMap.put (key2, “Melbourne”);

//Since UserKey is immutable, new instance is created.

myMap.get (new UserKey (“John”)) ; //Now the key can be accessed

Similar issues are possible with the Set (e.g. HashSet) as well. If you add an object to a “Set” and subsequently
modify the added object and later on try to query the original object it may not be present.
mySet.contains (originalObject) may return false.

introduces enumerated constants, which improves readability and maintainability of your code. Java
programming language enums are more powerful than their counterparts in other languages. As shown
below a class like “Weather” can be built on top of simple enum type “Season” and the class “Weather” can be
made immutable, and only one instance of each “Weather” can be created, so that your Weather class does not
have to override equals() and hashCode() methods.

public class Weather ({

public enum Season {WINTER, SPRING, SUMMER, FALL}

private final Season season;

private static final List<Weather> listWeather = new ArrayList<Weather> ()
private Weather (Season season) { this.season =
public Season getSeason () { return season;}

season; }

static {
for (Season season : Season.values()) { //using J2SE 5.0 for each loop
listWeather.add (new Weather (season)) ;

}
}

public static ArrayList<Weather> getWeatherList ()
public String toString(){ return season;}

{ return 1listWeather; }

//takes advantage of toString() method of Season.

Q 21: What is the main difference between a String and a StringBuffer class? m
A 21:

StringBuffer / StringBuilder (added in J2SE 5.0)

String is immutable: you can’t modify a string
object but can replace it by creating a new
instance. Creating a new instance is rather
expensive.

/l\nefficient version using immutable String
String output = “Some text”
Int count = 100;
for(int i =0; i<count; i++) {
output +=i;

return output;
The above code would build 99 new String

objects, of which 98 would be thrown away
immediately. Creating new objects is not

efficient.

StringBuffer is mutable: use StringBuffer or StringBuilder when you want
to modify the contents. StringBuilder was added in Java 5 and it is
identical in all respects to StringBuffer except that it is not synchronized,
which makes it slightly faster at the cost of not being thread-safe.

IIMore efficient version using mutable StringBuffer
StringBuffer output = new StringBuffer(110);// set an initial size of 110
output.append(“Some text”);
for(int i =0; i<count; i++) {
output.append(i);

return output.toString();

The above code creates only two new objects, the StringBuffer and the
final String that is returned. StringBuffer expands as needed, which is
costly however, so it would be better to initialize the StringBuffer with the
correct size from the start as shown.

Another important point is that creation of extra strings is not limited to overloaded mathematical operator “+” but
there are several methods like concat(), trim(), substring(), and replace() in String classes that generate new
string instances. So use StringBuffer or StringBuilder for computation intensive operations, which offer better
performance.

Q. What is an immutable object? Immutable objects whose state (i.e. the object’s data) does not change once it is
instantiated (i.e. it becomes a read-only object after instantiation). Immutable classes are ideal for representing

Java - Fundamentals

39

numbers (e.g. java.lang.Integer, java.lang.Float, java.lang.BigDecimal etc are immutable objects), enumerated
types, colors (e.g. java.awt.Color is an immutable object), short lived objects like events, messages etc.

Q. What are the benefits of immutable objects?
e Immutable classes can greatly simplify programming by freely allowing you to cache and share the references to
the immutable objects without having to defensively copy them or without having to worry about their values

becoming stale or corrupted.

e Immutable classes are inherently thread-safe and you do not have to synchronize access to them to be used in a
multi-threaded environment. So there is no chance of negative performance consequences.

o Eliminates the possibility of data becoming inaccessible when used as keys in HashMaps or as elements in
Sets. These types of errors are hard to debug and fix. Refer Q20 in Java section under “Q. Why it is a best
practice to implement the user defined key class as an immutable object? “

Q. How will you write an immutable class?

Writing an immutable class is generally easy but there can be some tricky situations. Follow the following guidelines:

1. Aclass is declared final (i.e. final classes cannot be extended).
public final class MyImmutable { .. }

2. All its fields are final (final fields cannot be mutated once assigned).
private final int[] myArray; //do not declare as = private final int[] myArray = null;

3. Do not provide any methods that can change the state of the immutable object in any way — not just setXXX
methods, but any methods which can change the state.

4. The “this” reference is not allowed to escape during construction from the immutable class and the immutable
class should have exclusive access to fields that contain references to mutable objects like arrays, collections

and mutable classes like Date etc by:

o Declaring the mutable references as private.

e Not returning or exposing the mutable references to the caller (this can be done by defensive copying)

Wrong way to write an immutable class \
Wrong way to write a constructor:

public final class Mylmmutable {
private final int[] myArray;

public Mylmmutable(int[] anArray) {
this.myArray = anArray; // wrong
}

public String toString() {
StringBuffer sb = new StringBuffer("Numbers are: ");
for (inti = 0; i < myArray.length; i++) {
sb.append(myArray[i] + " ");

}
return sb.toString();

}
}

/I the caller could change the array after calling the
constructor.

int[] array = {1,2};

Mylmmutable mylmmutableRef = new Mylmmutable(array) ;
System.out.printin("Before constructing " + mylmmutableRef);
array[1] = 5; // change (i.e. mutate) the element
System.out.printin("After constructing " + mylmmutableRef);

Out put:

Before constructing Numbers are: 1 2

Right way to write an immutable class
Right way is to copy the array before assigning in the constructor.

public final class Mylmmutable {
private final int[] myArray;

public Mylmmutable(int[] anArray) {
this.myArray = anArray.clone(); // defensive copy
}

public String toString() {
StringBuffer sb = new StringBuffer("Numbers are: ");
for (inti = 0; i < myArray.length; i++) {
sb.append(myArray[i] + " ");

}
return sb.toString();

}
}

/I the caller cannot change the array after calling the constructor.

int[] array = {1,2};

Mylmmutable mylmmutableRef = new Mylmmutable(array) ;
System.out.printin("Before constructing " + mylmmutableRef);
array[1] = 5; // change (i.e. mutate) the element
System.out.printin("After constructing " + mylmmutableRef);

Out put:
Before constructing Numbers are: 1 2

40 Java - Fundamentals

After constructing Numbers are: 1 5

As you can see in the output that the “Mylmmutable” object
has been mutated. This is because the object reference gets
copied as discussed in Q22 in Java section.

After constructing Numbers are: 1 2

As you can see in the output that the “Mylmmutable” object has not
been mutated.

Wrong way to write an accessor. A caller could get the array
reference and then change the contents:

public int[] getArray() {
return myArray;

}

Right way to write an accessor by cloning.

public int[] getAray () {
return (int[]) myArray.clone();

}

Beware of using the clone() method on a collection like a Map, List, Set etc because they are not only difficult
to implement correctly refer Q19 in Java section but also the default behavior of an object’s clone() method automatically
yields a shallow copy. You have to deep copy the mutable objects referenced by your immutable class. Refer Q26 in Java
section for deep vs. shallow cloning and Q22 in Java section for why you will be modifying the original object if you do not

deep copy.

Q. How would you defensively copy a Date field in your immutable class?

public final class MyDiary {
private Date myDate = null;

public MyDiary(Date aDate){

this.myDate = new Date(aDate.getTime()); /I defensive copying by not exposing the “myDate” reference
}
public Date getDate() {
return new Date(myDate.getTime); /I defensive copying by not exposing the “myDate” reference
}

}

Q 22: What is the main difference between pass-by-reference and pass-by-value? m

A 22: Other languages use pass-by-reference or pass-by-pointer. But in Java no matter what type of argument you
pass the corresponding parameter (primitive variable or object reference) will get a copy of that data, which is
exactly how pass-by-value (i.e. copy-by-value) works.

In Java, if a calling method passes a reference of an object as an argument to the called method then the passed-
in reference gets copied first and then passed to the called method. Both the original reference that was
passed-in and the copied reference will be pointing to the same object. So no matter which reference you use, you

will be always modifying the same original object, which is how the pass-by-reference works as well.

/ Pass-by-value for primitive variables vs Object references \
Primitive variables - Object references

public void first(){ _gtores i— P : 10 public void first(){ @

inti=10:@— | Car ¢ = new Car("red") @’ %or

int x = second(i); \l/ /[At this point o

/At this point Copy of | /color is Red S 7 Car object

[Ivalue of i is still 10 k=10 second(c); o) _

/Ivalue of x is 11 o\ //At this point String color = red

} o0 /lcolor is Blue

public int second(int k) o

k++@—actsonk——pl k=11

) <
public void second(Car d) Changes

return k ; { color = blue
} modifies the copy k d-SetCQ|0r(b|Ue>’/< modifies the original
but not the ort rnyal /lcolor is blue object through copied
ginal. } reference

If your method call involves inter-process (e.g. between two JVMs) communication, then the reference of the
calling method has a different address space to the called method sitting in a separate process (i.e. separate

Java - Fundamentals 41

JVM). Hence inter-process communication involves calling method passing objects as arguments to called method
by-value in a serialized form, which can adversely affect performance due to marshaling and unmarshaling cost.

Note: As discussed in Q69 in Enterprise section, EJB 2.x introduced local interfaces, where enterprise beans that can be used
locally within the same JVM using Java’s form of pass-by-reference, hence improving performance.

Q 23:

A 23:

What is serialization? How would you exclude a field of a class from serialization or what is a transient variable?
What is the common use? What is a serial version id? s m

Serialization is a process of reading or writing an object. It is a process of saving an object’s state to a sequence of
bytes, as well as a process of rebuilding those bytes back into a live object at some future time. An object is
marked serializable by implementing the java.io.Serializable interface, which is only a marker interface -- it simply
allows the serialization mechanism to verify that the class can be persisted, typically to a file.

Transient variables cannot be serialized. The fields marked transient in a serializable object will not be

transmitted in the byte stream. An example would be a file handle, a database connection, a system thread etc.
Such objects are only meaningful locally. So they should be marked as transient in a serializable class.

/ Serialization \

class Car implerrents Serializable
String color = null;
transient Hle th =null;

!

N

Serialization can adversely affect performance since it:

Car Object

= Depends on reflection.
= Has an incredibly verbose data format.
= |s very easy to send surplus data.

Q. When to use serialization? Do not use serialization if you do not have to. A common use of serialization is to
use it to send an object over the network or if the state of an object needs to be persisted to a flat file or a
database. (Refer Q57 on Enterprise section). Deep cloning or copy can be achieved through serialization. This
may be fast to code but will have performance implications (Refer Q26 in Java section).

To serialize the above “Car” object to a file (sample for illustration purpose only, should use try {} catch {} block):

Car car = new Car(); // The “Car” class implements a java.io.Serializable interface
FileOutputStream fos = new FileOutputStream(filename) ;

ObjectOutputStream out = new ObjectOutputStream (fos);

out.writeObject(car); // serialization mechanism happens here

out.close() ;

The objects stored in an HTTP session should be serializable to support in-memory replication of sessions to
achieve scalability (Refer Q20 in Enterprise section). Objects are passed in RMI (Remote Method Invocation)
across network using serialization (Refer Q57 in Enterprise section).

Q. What is Java Serial Version ID? Say you create a “Car” class, instantiate it, and write it out to an object
stream. The flattened car object sits in the file system for some time. Meanwhile, if the “Car” class is modified by
adding a new field. Later on, when you try to read (i.e. deserialize) the flattened “Car” object, you get the
java.io.InvalidClassException — because all serializable classes are automatically given a unique identifier. This
exception is thrown when the identifier of the class is not equal to the identifier of the flattened object. If you really
think about it, the exception is thrown because of the addition of the new field. You can avoid this exception being
thrown by controlling the versioning yourself by declaring an explicit serialVersionUID. There is also a small

42

Java - Fundamentals

performance benefit in explicitly declaring your serialVersionUID (because does not have to be calculated). So, it
is best practice to add your own serialVersionUID to your Serializable classes as soon as you create them as

shown below:

public class Car {

static final long serialVersionUID = 1L;

}

//assign a long value

Alternatively you can use the serialver tool comes with Sun’s JDK. This tool takes a full class name on the
command line and returns the serialVersionUID for that compiled class.

static final long serialVersionUID =

10275439472837494L;

//generated by serialver tool.

Q 24:
A 24:

Explain the Java I/O streaming concept and the use of the decorator design pattern in Java 1/0? @
Java input and output is defined in terms of an abstract concept called a “stream”, which is a sequence of data.

There are 2 kinds of streams.

= Byte streams (8 bit bytes) > Abstract classes are: InputStream and OutputStream
= Character streams (16 bit UNICODE) - Abstract classes are: Reader and Writer

Jjava.io.” classes use the decorator design pattern. The decorator design pattern attaches
responsibilities to objects at runtime. Decorators are more flexible than inheritance because the inheritance
attaches responsibility to classes at compile time. The java.io.* classes use the decorator pattern to construct
different combinations of behavior at runtime based on some basic classes.

Attaching responsibilities to classes at

compile time using subclassing.

Inheritance (aka subclassing) attaches
responsibilities to classes at compile time. When
you extend a class, each individual changes you
make to child class will affect all instances of the
child classes. Defining many classes using
inheritance to have all possible combinations is
problematic and inflexible.

Attaching responsibilities to objects at runtime using a decorator
design pattern.

By attaching responsibilities to objects at runtime, you can apply changes
to each individual object you want to change.

File file = new File (“c:/temp”);
FileInputStream fis = new FileInputStream(file) ;
BufferedInputStream bis = new BufferedInputStream(£fis) ;

Decorators decorate an object by enhancing or restricting functionality of
an object it decorates. The decorators add or restrict functionality to
decorated objects either before or after forwarding the request. At runtime
the BufferedinputStream (bis), which is a decorator (aka a wrapper
around decorated object), forwards the method call to its decorated object
FileInputStream (fis). The “bis” will apply the additional functionality of
buffering around the lower level file (i.e. fis) I/O.

/ java.io.* class hierarchy \
java.lang.Object
| | | | |
java.io.lInputStream java.io.OutputStream java.lang.System java.io.Reader java.io.Witer
java.io.FilelnputStream java.io.FileOutputStream java.io.InputStreamReader java.io.OutputStream\\titer
Note: Only a few subclasses of abstract classes are java.io.BufferedReader || java.io.FileReader java.io.FileViter
shown for clarity.

N

J

Q. How does the new I/O (NIO) offer better scalability and better performance?

Java - Fundamentals 43

Java has long been not suited for developing programs that perform a lot of /O operations. Furthermore,
commonly needed tasks such as file locking, non-blocking and asynchronous I/O operations and ability to map file
to memory were not available. Non-blocking 1/0 operations were achieved through work around such as
multithreading or using JNI. The New I/O API (aka NIO) in J2SE 1.4 has changed this situation.

A server’s ability to handle several client requests effectively depends on how it uses 1/0 streams. When a server
has to handle hundreds of clients simultaneously, it must be able to use I/O services concurrently. One way to
cater for this scenario in Java is to use threads but having almost one-to-one ratio of threads (100 clients will have
100 threads) is prone to enormous thread overhead and can result in performance and scalability problems
due to consumption of memory stacks (i.e. each thread has its own stack. Refer Q34, Q42 in Java section) and
CPU context switching (i.e. switching between threads as opposed to doing real computation.). To overcome this
problem, a new set of non-blocking 1/0 classes have been introduced to the Java platform in java.nio package.
The non-blocking I/O mechanism is built around Selectors and Channels. Channels, Buffers and Selectors are
the core of the NIO.

g Non-blocking /0 (i.e. New I/0) I
Process
Client-1 Channel Key-5 Key-4 | | Key-3 Key-2 Key-1
client-2 client-1 client-3 client-2 client-1

= =

Selector

Client-2 Channel
sequentially processed
(unlike threads, no context switching and separate
stack allocations are required)
Client-3 Channel

S /

A Channel class represents a bi-directional communication channel (similar to InputStream and OutputStream)
between datasources such as a socket, a file, or an application component, which is capable of performing one or
more I/O operations such as reading or writing. Channels can be non-blocking, which means, no 1/O operation will
wait for data to be read or written to the network. The good thing about NIO channels is that they can be
asynchronously interrupted and closed. So if a thread is blocked in an I/O operation on a channel, another thread
can interrupt that blocked thread.

A Selector class enables multiplexing (combining multiple streams into a single stream) and demultiplexing
(separating a single stream into multiple streams) I/O events and makes it possible for a single thread to efficiently
manage many |I/O channels. A Selector monitors selectable channels, which are registered with it for /O events
like connect, accept, read and write. The keys (i.e. Key1, Key2 etc represented by the SelectionKey class)
encapsulate the relationship between a specific selectable channel and a specific selector.

Buffers hold data. Channels can fill and drain Buffers. Buffers replace the need for you to do your own buffer
management using byte arrays. There are different types of Buffers like ByteBuffer, CharBuffer, DoubleBuffer, etc.

NIO uses a reactor design pattern, which demultiplexes events (separating single stream into
multiple streams) and dispatches them to registered object handlers. The reactor pattern is similar to an observer
pattern (aka publisher and subscriber design pattern), but an observer pattern handles only a single source of
events (i.e. a single publisher with multiple subscribers) where a reactor pattern handles multiple event sources
(i.e. multiple publishers with multiple subscribers). The intent of an observer pattern is to define a one-to-many
dependency so that when one object (i.e. the publisher) changes its state, all its dependents (i.e. all its
subscribers) are notified and updated correspondingly.

Another sought after functionality of NIO is its ability to map a file to memory. There is a specialized form of a
Buffer known as “MappedByteBuffer”, which represents a buffer of bytes mapped to a file. To map a file to
“MappedByteBuffer”, you must first get a channel for a file. Once you get a channel then you map it to a buffer and
subsequently you can access it like any other “ByteBuffer”. Once you map an input file to a “CharBuffer”, you can
do pattern matching on the file contents. This is similar to running “grep” on a UNIX file system.

44

Java - Fundamentals

Another feature of NIO is its ability to lock and unlock files. Locks can be exclusive or shared and can be held
on a contiguous portion of a file. But file locks are subject to the control of the underlying operating system.

Q 25:
A 25:

How can you improve Java I/O performance?
Java applications that utilize Input/Output are excellent candidates for performance tuning. Profiling of Java
applications that handle significant volumes of data will show significant time spent in 1/O operations. This means
substantial gains can be had from 1/O performance tuning. Therefore, I/O efficiency should be a high priority for
developers looking to optimally increase performance.

The basic rules for speeding up 1/O performance are

= Minimize accessing the hard disk.

= Minimize accessing the underlying operating system.
= Minimize processing bytes and characters individually.

Let us look at some of the techniques to improve /O performance.

= Use buffering to minimize disk access and underlying operating system. As shown below, with buffering
large chunks of a file are read from a disk and then accessed a byte or character at a time.

Without buffering : inefficient code With Buffering: yields better performance
try{ try{
File f = new File("myFile.txt"); File f = new File("myFile.txt");
FileInputStream fis = new FilelnputStream(f); FileInputStream fis = new FilelnputStream(f);
int count = 0; BufferedinputStream bis = new BufferedInputStream(fis);
intb =0; int count = 0;
while((b = fis.read()) != -1)X intb=0;
if(b=="\n") { while((b = bis.read()) !=-1)¥
count++; if(b=="\n") {
} count++;
}

/I fis should be closed in a finally block.
fis.close() ; /Ibis should be closed in a finally block.
} bis.close() ;
catch(IOException io){} }
catch(IOException io){}
Note: fis.read() is a native method call to the
underlying operating system. Note: bis.read() takes the next byte from the input buffer and only
rarely access the underlying operating system.

Instead of reading a character or a byte at a time, the above code with buffering can be improved further by
reading one line at a time as shown below:

FileReader fr = new FileReader (f);
BufferedReader br = new BufferedReader (fr);
while (br.readLine() != null) count++;

By default the System.out is line buffered, which means that the output buffer is flushed when a new line
character (i.e. “\n”) is encountered. This is required for any interactivity between an input prompt and display
of output. The line buffering can be disabled for faster I/O operation as follows:

FileOutputStream fos = new FileOutputStream(file);
BufferedOutputStream bos = new BufferedOutputStream(fos, 1024);
PrintStream ps = new PrintStream(bos, false);

/I To redirect standard output to a file instead of the “System” console which is the default for both “System.out” (i.e.
/I standard output) and “System.err” (i.e. standard error device) variables

System. setOut (ps) ;
while (someConditionIsTrue)

System.out.println (“blah.blah..”);
}

Java - Fundamentals 45

It is recommended to use logging frameworks like Log4J with SLF4J (Simple Logging Facade for Java),
which uses buffering instead of using default behavior of System.out.printin(.....) for better performance.
Frameworks like Log4J are configurable, flexible, extensible and easy to use.

= Use the NIO package, if you are using JDK 1.4 or later, which uses performance-enhancing features like
buffers to hold data, memory mapping of files, non-blocking 1/0 operations etc.

= 1/O performance can be improved by minimizing the calls to the underlying operating systems. The Java
runtime itself cannot know the length of a file, querying the file system for isDirectory(), isFile(), exists() etc
must query the underlying operating system.

= Where applicable caching can be used to improve performance by reading in all the lines of a file into a Java
Collection class like an ArrayList or a HashMap and subsequently access the data from an in-memory
collection instead of the disk.

Q 26: What is the main difference between shallow cloning and deep cloning of objects? m
A 26: The default behavior of an object's clone() method automatically yields a shallow copy. So to achieve a deep copy
the classes must be edited or adjusted.

Shallow copy: If a shallow copy is performed on obj-1 as shown in fig-2 then it is copied but its contained objects
are not. The contained objects Obj-1 and Obj-2 are affected by changes to cloned Obj-2. Java supports shallow
cloning of objects by default when a class implements the java.lang.Cloneable interface.

Deep copy: If a deep copy is performed on obj-1 as shown in fig-3 then not only obj-1 has been copied but the

objects contained within it have been copied as well. Serialization can be used to achieve deep cloning. Deep
cloning through serialization is faster to develop and easier to maintain but carries a performance overhead.

/ Shallow Vs Deep cloning \

Cloned
Obj-2

contained
Obj-1

contains contains

contained contained

contained contained
Obj-1 Obj-2

contained
Obj-2

Obj-1 Obj-2

contained
Obj-2

contained
Obj-1

Fig-3:Deep cloning

_ Fig-1:Original Object Fig-2:Shallow cloning 4

invoking clone() method on a collection like HashMap, List etc returns a shallow copy of HashMap,
List, instances. This means if you clone a HashMap, the map instance is cloned but the keys and values
themselves are not cloned. If you want a deep copy then a simple method is to serialize the HashMap to a
ByteArrayOutputSream and then deserialize it. This creates a deep copy but does require that all keys and values
in the HashMap are Serializable. Main advantage of this approach is that it will deep copy any arbitrary object
graph. Refer Q23 in Java section for deep copying using Serialization. Alternatively you can provide a static
factory method to deep copy. to deep copy a list of Car objects.

public static List deepCopy(List listCars) {

List copiedList = new ArrayList (10);

for (Object object : listCars) { //JDK 1.5 for each loop
Car original = (Car)object;
Car carCopied = new Car(); //instantiate a new Car object
carCopied.setColor ((original.getColor()));
copiedList.add (carCopied) ;

}

return copiedList;

46 Java - Fundamentals
Q 27: What is the difference between an instance variable and a static variable? How does a local variable compare to
an instance or a static variable? Give an example where you might use a static variable?
A 27:
Static variables Instance variables
Class variables are called static variables. There is only one | Instance variables are non-static and there is one
occurrence of a class variable per JVM per class loader. | occurrence of an instance variable in each class instance
When a class is loaded the class variables (aka static | (i.e. each object). Also known as a member variable or a
variables) are initialized. field.
A static variable is used in the singleton pattern. (Refer Q51 in Java section). A static variable is used with a final
modifier to define constants.
Local variables Instance and static variables
Local variables have a narrower scope than instance | Instance variables have a narrower scope than static
variables. variables.
The lifetime of a local variable is determined by execution | Instance and static variables are associated with objects and
path and local variables are also known as stack variables | therefore live in the heap. Refer Q34 in Java section for
because they live on the stack. Refer Q34 for stack & heap. stack & heap.
For a local variable, it is illegal for code to fail to assign it a | Both the static and instance variables always have a value. If
value. It is the best practice to declare local variables only | your code does not assign them a value then the run-time
where required as opposed to declaring them upfront and | system will implicity assign a default value (e.g.
cluttering up your code with some local variables that never | null/0/0.0/false).
get used.
Java does not support global, universally accessible variables. You can get the same sorts of effects with classes that
have static variables.
Q 28: Give an example where you might use a static method? m
A 28: Static methods prove useful for creating utility classes, singleton classes and factory methods (Refer Q51,
Q52 in Java section). Utility classes are not meant to be instantiated. Improper coding of utility classes can lead to
procedural coding. java.lang.Math, java.util.Collections etc are examples of utility classes in Java.
Q 29: What are access modifiers? [LF] {8
A 29:
_ Modifier __Used with __Description
public Outer classes, interfaces, A class or interface may be accessed from outside the
constructors, Inner classes, methods package. Constructors, inner classes, methods and field
and field variables variables may be accessed wherever their class is
accessed.
protected Constructors, inner classes, methods, Accessed by other classes in the same package or any
and field variables. subclasses of the class in which they are referred (i.e. same
package or different package).
private Constructors, inner classes, Accessed only within the class in which they are declared
methods and field variables,
No modifier: Outer classes, inner classes, Accessed only from within the package in which they are
(Package by interfaces, constructors, methods, and | declared.
default). field variables
Q 30: Where and how can you use a private constructor? m
A 30: Private constructor is used if you do not want other classes to instantiate the object and to prevent subclassing.
The instantiation is done by a public static method (i.e. a static factory method) within the same class.
= Used in the singleton design pattern. (Refer Q51 in Java section).
= Used in the factory method design pattern (Refer Q52 in Java section). e.g. java.util.Collections class (Refer
Q16 in Java section).
= Used in utility classes e.g. StringUtils etc.
Q 31: What is a final modifier? Explain other Java modifiers? FAQ
A 31: Afinal class can’t be extended i.e. A final class can not be subclassed. A final method can’t be overridden when its

class is inherited. You can’t change value of a final variable (i.e. it is a constant).

Java - Fundamentals 47

Modifier | Class | Method Variable
static A static inner class is just an inner | A static method is called by classname.method | Class variables are
class associated with the class, (e.g Math.random()), can only access static called static variables.
rather than with an instance of the | variables. There is only one
class. occurrence of a class
variable per JVM per
class loader.
abstract An abstract class cannot be Method is defined but contains no N/A
instantiated, must be a superclass | implementation code (implementation code is
and a class must be declared included in the subclass). If a method is
abstract whenever one or more abstract then the entire class must be abstract.
methods are abstract.
synchronized N/A Acquires a lock on the class for static N/A
methods.

Acquires a lock on the instance for non-
static methods.

transient N/A N/A variable should not be
serialized.
final Class cannot be inherited (i.e. Method cannot be overridden. Makes the variable
extended) immutable.
native N/A Platform dependent. No body, only signature. N/A

Be prepared for tricky questions on modifiers like, what is a “volatile”? Or what is a “const’? Etc. The
reason it is tricky is that Java does have these keywords “const” and “volatile” as reserved, which means you can’t
name your variables with these names but modifier “const” is not yet added in the language and the modifier
“volatile” is very rarely used.

The “volatile” modifier is used on instance variables that may be modified simultaneously by other threads. The
modifier volatile only synchronizes the variable marked as volatile whereas “synchronized” modifier synchronizes
all variables. Since other threads cannot see local variables, there is no need to mark local variables as volatile.

For example:

volatile int number;
volatile private List listItems = null;

Java uses the “final” modifier to declare constants. A final variable or constant declared as “final” has a value that
is immutable and cannot be modified to refer to any other objects other than one it was initialized to refer to. So
the “final” modifier applies only to the value of the variable itself, and not to the object referenced by the variable.
This is where the “const” modifier can come in very useful if added to the Java language. A reference variable
or a constant marked as “const” refers to an immutable object that cannot be modified. The reference variable
itself can be modified, if it is not marked as “final”. The “const” modifier will be applicable only to non-primitive
types. The primitive types should continue to use the modifier “final”.

Q. If you want to extend the “java.lang.String” class, what methods will you override in your extending
class?

You would be tempted to say equals(), hashCode() and toString() based on Q19, Q20 in Java section but the
“java.lang.String” class is declared final and therefore it cannot be extended.

Q 32:
A 32:

What is the difference between final, finally and finalize() in Java? m

= final - constant declaration. Refer Q31 in Java section.

= finally - handles exception. The finally block is optional and provides a mechanism to clean up regardless of
what happens within the try block (except System.exit(0) call). Use the finally block to close files or to release
other system resources like database connections, statements etc. (Refer Q45 in Enterprise section)

= finalize() - method helps in garbage collection. A method that is invoked before an object is discarded by the
garbage collector, allowing it to clean up its state. Should not be used to release non-memory resources like
file handles, sockets, database connections etc because Java has only a finite number of these resources and
you do not know when the garbage collection is going to kick in to release these non-memory resources
through the finalize() method. Refer Q19 in Java Section.

Q 33:
A 33:

Why would you prefer a short circuit “&&, ||” operators over logical “& , |” operators?

Firstly NullPointerException is by far the most common RuntimeException. If you use the logical operator you can
get a NullPointerException. This can be avoided easily by using a short circuit “&&” operator as shown below.

48

Java - Fundamentals

There are other ways to check for null but short circuit && operator can simplify your code by not having to declare
separate if clauses.

if ((obj !'= null) & obj.equals(newObj)) { //can cause a NullPointerException if obj == null
// because obj.equals (newObj) is always executed.

}

Short-circuiting means that an operator only evaluates as far as it has to, not as far as it can. If the variable 'obj'
equals null, it won't even try to evaluate the 'obj.equals(newObj)’ clause as shown in the following example. This
protects the potential NullPointerException.

if((obj != null) && obj.equals(newObj)) { //cannot get a NullPointerException because

//0obj.equals (newObj) is executed only if obj != null
}

Secondly, short-circuit “&&” and “||” operators can improve performance in certain situations. For example:

if ((number <= 7) || (doComputeIntensiveAnalysis (number) <= 13)) { //the CPU intensive
//computational method in bold is executed only if number > 7.

}

Q 34:

A 34:

How does Java allocate stack and heap memory? Explain re-entrant, recursive and idempotent
methods/functions? m

Each time an object is created in Java it goes into the area of memory known as heap. The primitive variables like
int and double are allocated in the stack (i.e. Last In First Out queue), if they are local variables and in the heap if
they are member variables (i.e. fields of a class). In Java methods and local variables are pushed into stack when
a method is invoked and stack pointer is decremented when a method call is completed. In a multi-threaded
application each thread will have its own stack but will share the same heap. This is why care should be taken in
your code to avoid any concurrent access issues in the heap space. The stack is thread-safe because each thread
will have its own stack with say 1MB RAM allocated for each thread but the heap is not thread-safe unless
guarded with synchronization through your code. The stack space can be increased with the —Xss option.

/ Java stack & heap memory allocation \

Stack

public class StackRef {

public void first(){.\
second(); 7
/lafte

} 4 ::ilfnmo

P}
\ second()

public void second() { first()

Carc =new Car() l:
} i

Heap
} .
second() refc -——f--——-——_3 ;-e
first()
public class HeapRef{ @
Carc=new Car(), @—+—— 1 °
public void first() {
c=new Car(); ®___ |

}
}

N

Java - Fundamentals 49

All Java methods are automatically re-entrant. It means that several threads can be executing the same method
at once, each with its own copy of the local variables. A Java method may call itself without needing any special
declarations. This is known as a recursive method call. Given enough stack space, recursive method calls are
perfectly valid in Java though it is tough to debug. Recursive methods are useful in removing iterations from many
sorts of algorithms. All recursive functions are re-entrant but not all re-entrant functions are recursive. ldempotent
methods are methods, which are written in such a way that repeated calls to the same method with the same
arguments yield same results. [For example| clustered EJBs, which are written with idempotent methods, can
automatically recover from a server failure as long as it can reach another server (i.e. scalable).

Q 35:
A 35:

Explain Outer and Inner classes (or Nested classes) in Java? When will you use an Inner Class? @

In Java not all classes have to be defined separate from each other. You can put the definition of one class inside
the definition of another class. The inside class is called an inner class and the enclosing class is called an outer
class. So when you define an inner class, it is a member of the outer class in much the same way as other
members like attributes, methods and constructors.

Q. Where should you use inner classes? Code without inner classes is more maintainable and readable.
When you access private data members of the outer class, the JDK compiler creates package-access member
functions in the outer class for the inner class to access the private members. This leaves a security hole. In
general we should avoid using inner classes. Use inner class only when an inner class is only relevant in the
context of the outer class and/or inner class can be made private so that only outer class can access it. Inner
classes are used primarily to implement helper classes like Iterators, Comparators etc which are used in the
context of an outer class.

Member inner class Anonymous inner class

public class MyStack { public class MyStack {
private Object[] items = null; private Object[] items = null;
;).L.Jb"C Iterator iterator() { ;).L.Jb“C Iterator iterator() {
return new Stacklterator(); return new lIterator {
/linner class public boolean hasNext() {...}
class Stacklterator implements Iterator{ }
}
public boolean hasNext(){...} }
}
}

Explain outer and inner classes?

Class Type Description Example +

Outer Package Top level class. Only type JVM /lpackage scope
class member class can recognize. class Outside{}
or interface
Inner static nested Defined within the context of the | //package scope
class class or top-level class. Must be static & class Outside {
interface can access static members of its static class Inside{ }

containing class. No relationship | }
between the instances of outside

and Inside classes. [Outside.class ,Outside$Inside.class|
Inner Member class Defined within the context of class Outside{
class outer class, but non-static. Until class Inside(){}

an object of Outside class has
been created you can’t create

Inside. [Outside.class , Outside$Inside.class]
Inner Local class Defined within a block of code. class Outside {
class Can use final local variables and void first() {

final method parameters. Only final inti=5;

visible within the block of code class Inside{}

that defines it.
}

[Outside.class , Outside1Inside.class|

50

Java - Fundamentals

Inner Anonymous Just like local class, but no /IAWT example
class class name is used. Useful when only | class Outside{
one instance is used in a void first() {
method. Most commonly used in button.addActionListener (new ActionListener()
AWT/SWING event model,
Spring framework hibernate call public void actionPerformed(ActionEvent e) {
back methods etc. System.out.printin(“The button was pressed!”);
»;
}
}
[Outside.class , Outside$1.class|

If you have used the Spring framework with the Hibernate framework (Both are very popular frameworks,
Refer section “Emerging Technologies/Frameworks”), it is likely that you would have used an anonymous inner
class (i.e. a class declared inside a method) as shown below:

//anonymous inner classes can only access local variables if they are declared as final
public Pet getPetById(final String id) {
return (Pet) getHibernateTemplate ().execute (new HibernateCallback() ({
public Object doInHibernate (Session session) {
HibernateTemplate ht = getHibernateTemplate () ;
// .. can access variable “id”
return myPet;

});

Q. Are the following valid java statements?
Line: OuterClass.StaticNestedClass nestedObject = new OuterClass.StaticNestedClass() ;
Yes. The above line is valid. It is an instantiation of a static nested inner class.

OuterClass outerObject = new OuterClass();
Line: OuterClass.InnerClass innerObject = outerObject.new InnerClass();

Yes. The above line is valid. It is an instantiation of a member inner class. An instance of an inner class can exist
only within an instance of an outer class. The sample code for the above is shown below:

public class OuterClass {
static class StaticNestedClass {
StaticNestedClass () {
System.out.println ("StaticNestedClass") ;
}
}

class InnerClass ({
InnerClass () {
System.out.println ("InnerClass") ;

}

Q 36:
A 36:

What is type casting? Explain up casting vs. down casting? When do you get ClassCastException? m
Type casting means treating a variable of one type as though it is another type.

When up casting primitives as shown below from left to right, automatic conversion occurs. But if you go from
right to left, down casting or explicit casting is required. Casting in Java is safer than in C or other languages that
allow arbitrary casting. Java only lets casts occur when they make sense, such as a cast between a float and an
int. However you can't cast between an int and a String (is an object in Java).

byte = short = int 2 long > float > double

int 1 = 5;
long j = i; //Right. Up casting or implicit casting
byte bl = i; //Wrong. Compile time error “Type Mismatch”.

byte b2 = (byte) i ; //Right. Down casting or explicit casting is required.

Java - Fundamentals 51

When it comes to object references you can always cast from a subclass to a superclass because a subclass
object is also a superclass object. You can cast an object implicitly to a super class type (i.e. upcasting). If this
were not the case polymorphism wouldn’t be possible.

/ Upcasting vs Downcasting \

Vehicle v1 = new Car(); /IRight.upcasting or implicit casting

Object Vehicle v2 = new Vehicle();
Carc0 =v1; //Wrong. compile time error "Type Mismatch".
Vehicle /IExplicit or down casting is required
Car c1 = (Car)v1; /I Right. down casting or explicit casting.
I I /I v1 has knowledge of Car due to line1
Bus Car Car c2 = (Car)vz; //Wrong. Runtime exception ClassCastException

/Iv2 has no knowledge of Car.
Bus b1 = new BMW(); //Wrong. compile time error "Type Mismatch"

BMW Car ¢3 = new BMW(); /IRight.upcasting or implicit casting
Car c4 = (BMW)v1; //Wrong. Runtime exception ClassCastException
Object o = v1; /Iv1 can only be upcast to its parent or
Car ¢5 = (Car)v1; /Iv1 can be down cast to Car due to line 1.

o /

You can cast down the hierarchy as well but you must explicitly write the cast and the object must be a
legitimate instance of the class you are casting to. The ClassCastException is thrown to indicate that code
has attempted to cast an object to a subclass of which it is not an instance. If you are using J2SE 5.0 then
“generics” will eliminate the need for casting (Refer Q55 in Java section) and otherwise you can deal with the
problem of incorrect casting in two ways:

= Use the exception handling mechanism to catch ClassCastException.

try{
Object o = new Integer(l);
System.out.println((String) o);

}

catch (ClassCastException cce) ({
logger.log(“Invalid casting, String is expected..Not an Integer”);
System.out.println(((Integer) o) .toString());

}

= Use the instanceof statement to guard against incorrect casting.

if (v2 instanceof Car) {
Car c2 = (Car) v2;
}

The “instanceof” and “typecast” constructs are shown for the illustration purpose only.
Using these constructs can be unmaintainable due to large if and elseif statements and can affect
performance if used in frequently accessed methods or loops. Look at using visitor design pattern to avoid
these constructs where applicable. (Refer Q11 in How would you go about section...).

Points-to-ponder: You can also get a ClassCastException when two different class loaders load the same class because they
are treated as two different classes.

Q 37:

A37:

What do you know about the Java garbage collector? When does the garbage collection occur? Explain different
types of references in Java? mh

Each time an object is created in Java, it goes into the area of memory known as heap. The Java heap is called
the garbage collectable heap. The garbage collection cannot be forced. The garbage collector runs in low
memory situations. When it runs, it releases the memory allocated by an unreachable object. The garbage
collector runs on a low priority daemon (i.e. background) thread. You can nicely ask the garbage collector to
collect garbage by calling System.gc() but you can’t force it.

52

What is an unreachable object?

An object’s life has no meaning unless something has reference to it. If you can’t reach it then you can’t ask it to
do anything. Then the object becomes unreachable and the garbage collector will figure it out. Java automatically
collects all the unreachable objects periodically and releases the memory consumed by those unreachable objects
to be used by the future reachable objects.

Java - Fundamentals

/

Garbage Collection & Unreachable Objects

Car a
Car b

a
b

N

Case 1

new Car();
new Car()

Case 2

a = new Car() }

Case 3

Case

null;
null;

)

®—ref b

®—refa

Heap

@——ref a‘>®

Car object

@ —refb
—=2

Car object

>

Car object

Car object

Car object

Q>

Car object

2>

Car object

Car object

reachable

unreachable

reachable

unreachable

reachable

unreachable

unreachab

We can use the following options with the Java command to enable tracing for garbage collection events.

java -verbose:gc

Explain types of references in Java? java.lang.ref package can be used to declare soft, weak and phantom

references.

Garbage Collector won’t remove a strong reference.

A soft reference will only get removed if memory is low. So it is useful for implementing caches while

avoiding memory leaks.

A weak reference will get removed on the next garbage collection cycle. Can be used for implementing
canonical maps. The java.util. WeakHashMap implements a HashMap with keys held by weak references.
A phantom reference will be finalized but the memory will not be reclaimed. Can be useful when you want to

be notified that an object is about to be collected.

//reports on each garbage collection event.

Java - Fundamentals 53

Q 38:

If you have a circular reference of objects, but you no longer reference it from an execution thread, will this object
be a potential candidate for garbage collection? m

A 38: Yes. Refer diagram below.

/ Garbage Collecting Circular References \

Before buildCar() returns After buildCar() returns

Stack Heap Stack Heap

Both the Car & Engine are not reachable
and potential candidate for Garbage

K Collection.

sample code

public void buildCar() {
Car ¢ = new Car();
Engine e = new Engine();
/llets create a circular reference
c.engine = ¢;
e.car =¢;

buildCar()

Q 39:

A 39:

Discuss the Java error handling mechanism? What is the difference between Runtime (unchecked) exceptions
and checked exceptions? What is the implication of catching all the exceptions with the type “Exception”?
e

Errors: When a dynamic linking failure or some other “hard” failure in the virtual machine occurs, the virtual
machine throws an Error. Typical Java programs should not catch Errors. In addition, it's unlikely that typical Java
programs will ever throw Errors either.

Exceptions: Most programs throw and catch objects that derive from the Exception class. Exceptions indicate
that a problem occurred but that the problem is not a serious JVM problem. An Exception class has many
subclasses. These descendants indicate various types of exceptions that can occur. For example,
NegativeArraySizeException indicates that a program attempted to create an array with a negative size. One
exception subclass has special meaning in the Java language: RuntimeException. All the exceptions except
RuntimeException are compiler checked exceptions. If a method is capable of throwing a checked exception it
must declare it in its method header or handle it in a try/catch block. Failure to do so raises a compiler error. So
checked exceptions can, at compile time, greatly reduce the occurrence of unhandled exceptions surfacing at
runtime in a given application at the expense of requiring large throws declarations and encouraging use of poorly-
constructed try/catch blocks. Checked exceptions are present in other languages like C++, C#, and Python.

ﬁhrowable and its subclassesx

Object

4'&

Throwable

ZAN

Error ‘
Exception

LinkageError

I0Exception RuntimeException

AN

NullPointerException

- —/

54

Java - Fundamentals

Runtime Exceptions (unchecked exception)

A RuntimeException class represents exceptions that occur within the Java virtual machine (during runtime). An
example of a runtime exception is NullPointerException. The cost of checking for the runtime exception often
outweighs the benefit of catching it. Attempting to catch or specify all of them all the time would make your code
unreadable and unmaintainable. The compiler allows runtime exceptions to go uncaught and unspecified. If you
like, you can catch these exceptions just like other exceptions. However, you do not have to declare it in your
“throws" clause or catch it in your catch clause. In addition, you can create your own RuntimeException
subclasses and this approach is probably preferred at times because checked exceptions can complicate method
signatures and can be difficult to follow.

Q. What are the exception handling best practices:

1. Q. Why is it not advisable to catch type “Exception”?

Exception handling in Java is polymorphic in nature. For example if you catch type Exception in your code then it
can catch or throw its descendent types like /OException as well. So if you catch the type Exception before the
type IOException then the type Exception block will catch the entire exceptions and type IOException block is
never reached. In order to catch the type /OException and handle it differently to type Exception, IOException
should be caught first (remember that you can’t have a bigger basket above a smaller basket).

/ Catching Exceptions \

Wrong approach

try{}
catch(Exception ex){ basket
/Ithis block is reached

}
catch(IOException ioe) { Hint: As shown in the diagram, think
//this block is never reached of catching an exception in a basket.

You should always have the smaller

/[There is a bigger basket

J/above me who will catch it basket above the bigger basket.
IIbefore | can. Otherwise the bigggr basket will
} catch all the exceptions and the

smaller basket will not catch any.

Right approach

tryl}

catch(IOException ioe){

catch(Exception ex) {

}

o /

The diagram above is an example for illustration only. In practice it is not recommended to catch type
“Exception”. We should only catch specific subtypes of the Exception class. Having a bigger basket (i.e.
Exception) will hide or cause problems. Since the RunTimeException is a subtype of Exception, catching the type
Exception will catch all the run time exceptions (like NullPointerException, ArraylndexOutOfBoundsException) as
well.

basket

The FileNotFoundException is extended (i.e. inherited) from the /OException. So (subclasses have to
be caught first) FileNotFoundException (small basket) should be caught before IOException (big basket).

2. Q. Why should you throw an exception early?

The exception stack trace helps you pinpoint where an exception occurred by showing you the exact sequence of
method calls that lead to the exception. By throwing your exception early, the exception becomes more accurate
and more specific. Avoid suppressing or ignoring exceptions. Also avoid using exceptions just to get a flow control.

Instead of:
// assume this line throws an exception because filename == null.
InputStream in = new FileInputStream (fileName) ;

Java - Fundamentals 55

Use the following code because you get a more accurate stack trace:

if (filename == null) {
throw new IllegalArgumentException(“file name is null”);
}

InputStream in = new FileInputStream(fileName) ;

3. Why should you catch a checked exception late in a catch {} block?

You should not try to catch the exception before your program can handle it in an appropriate manner. The natural
tendency when a compiler complains about a checked exception is to catch it so that the compiler stops reporting
errors. It is a bad practice to sweep the exceptions under the carpet by catching it and not doing anything with it.
The best practice is to catch the exception at the appropriate layer (e.g. an exception thrown at an integration layer
can be caught at a presentation layer in a catch {} block), where your program can either meaningfully recover
from the exception and continue to execute or log the exception only once in detail, so that user can identify the
cause of the exception.

4. Q. When should you use a checked exception and when should you use an unchecked exception?

Due to heavy use of checked exceptions and minimal use of unchecked exceptions, there has been a hot debate
in the Java community regarding true value of checked exceptions. Use checked exceptions when the client code
can take some useful recovery action based on information in exception. Use unchecked exception when client
code cannot do anything. Convert your SQLException into another checked exception if the client
code can recover from it. Convert your SQLException into an unchecked (i.e. RuntimeException) exception, if the
client code can not recover from it. (Note: Hibernate 3 & Spring uses RuntimeExceptions prevalently).

Important: throw an exception early and catch an exception late but do not sweep an exception under the carpet
by catching it and not doing anything with it. This will hide problems and it will be hard to debug and fix.

A note on key words for error handling:

throw / throws — used to pass an exception to the method that called it.

try — block of code will be tried but may cause an exception.

catch — declares the block of code, which handles the exception.

finally — block of code, which is always executed (except System.exit(0) call) no matter what program flow, occurs
when dealing with an exception.

assert — Evaluates a conditional expression to verify the programmer’s assumption.

Q 40:
A 40:

What is a user defined exception? @
User defined exceptions may be implemented by defining a new exception class by extending the Exception class.
public class MyException extends Exception {
/* class definition of constructors goes here */
public MyException () {
super () ;
}
public MyException (String errorMessage) {
super (errorMessage) ;

}
}

Throw and/or throws statement is used to signal the occurrence of an exception. To throw an exception:
throw new MyException(“I threw my own exception.”)

To declare an exception: public myMethod () throws MyException {..}

Q41:
A41:

What are the flow control statements in Java?

The flow control statements allow you to conditionally execute statements, to repeatedly execute a block of
statements, or to just change the sequential flow of control.

56 Java - Fundamentals

Flow control | Keyword

types
Looping while, do-while, for

The body of the while loop is executed only if the expression is true, so it may not be executed even
once:

while(i < 5){...}

The body of the do-while loop is executed at least once because the test expression is evaluated
only after executing the loop body. Also, don't forget the ending semicolon after the while
expression.

do { .. } while(i < 5);
The for loop syntax is:
for (exprl; expr2; expr3)
{ // body
}

expr1 > is for initialization, expr2 - is the conditional test, and expr3 - is the iteration expression.
Any of these three sections can be omitted and the syntax will still be legal:

for(; ;) {} // an endless loop
Decision if-else, switch-case
making
The if-else statement is used for decision-making -- that is, it decides which course of action needs
to be taken.
if (x == 5) {..} else {..}
The switch statement is also used for decision-making, based on an integer expression. The
argument passed to the switch and case statements should be int, short, char, or byte. The
argument passed to the case statement should be a literal or a final variable. If no case matches, the
default statement (which is optional) is executed.
int i = 1;
switch (i)
{
case 0:
System.out.println ("Zero") ;break; //if break; is omitted case 1: also executed
case 1:
System.out.println ("One") ;break; //if break; is omitted default: also executed
default:
System.out.println ("Default") ;break;
}
Branching break, continue, label:, return
The break statement is used to exit from a loop or switch statement, while the continue statement
is used to skip just the current iteration and continue with the next. The return is used to return from
a method based on a condition. The label statements can lead to unreadable and unmaintainable
spaghetti code hence should be avoided.
Exception try-catch-finally, throw
handling

Exceptions can be used to define ordinary flow control. This is a misuse of the idea of exceptions,
which are meant only for exceptional conditions and hence should be avoided.

Q 42: What is the difference between processes and threads? m

A 42: A process is an execution of a program but a thread is a single execution sequence within the process. A process
can contain multiple threads. A thread is sometimes called a lightweight process.

Java - Fundamentals 57

/ Process vs Threads \
@ocess (JVM) \
| Thread 2 | | Thread 3 |

Stack Stack Stack

Each thread has its
own stack memory

method1() method1() method1()

Single heap per process Heap

shared by all the threads

A JVM runs in a single process and threads in a JVM share the heap belonging to that process. That is why
several threads may access the same object. Threads share the heap and have their own stack space. This is
how one thread’s invocation of a method and its local variables are kept thread safe from other threads. But the
heap is not thread-safe and must be synchronized for thread safety.

Q 43: Explain different ways of creating a thread? [LF] [Z¥8
A 43: Threads can be used by either :

= Extending the Thread class
= Implementing the Runnable interface.

class Counter extends Thread {

//method where the thread execution will start
public void run() {
//logic to execute in a thread

}

//let’s see how to start the threads
public static void main(String[] args) {
Thread tl1 = new Counter() ;
Thread t2 = new Counter() ;
tl.start(); //start the first thread. This calls the run() method.
t2.start(); //this starts the 2™ thread. This calls the run() method.

}
class Counter extends Base implements Runnable {

//method where the thread execution will start
public void run () {
//logic to execute in a thread

}

//let us see how to start the threads
public static void main (String[] args) {
Thread tl = new Thread(new Counter());
Thread t2 = new Thread(new Counter()) ;
tl.start(); //start the first thread. This calls the run() method.
t2.start(); //this starts the 2" thread. This calls the run() method.

}

Q. Which one would you prefer and why? The Runnable interface is preferred, as it does not require your
object to inherit a thread because when you need multiple inheritance, only interfaces can help you. In the above
example we had to extend the Base class so implementing Runnable interface is an obvious choice. Also note
how the threads are started in each of the different cases as shown in the code sample. In an OO approach you

58 Java - Fundamentals
should only extend a class when you want to make it different from it's superclass, and change it's behavior. By
implementing a Runnable interface instead of extending the Thread class, you are telling to the user that the class
Counter that an object of type Counter will run as a thread.
Q 44: Briefly explain high-level thread states?
A 44: The state chart diagram below describes the thread states. (Refer Q107 in Enterprise section for state chart
diagram).
/ Thread states(StateMachine diagram) \
Object.notify(); .
Runnable Object.notifyAll(); Sleeping
Waiting
hread.sleep();
Scheduler swa PO
or Thread.yield();
Running data/sync
(finished) (executing) @ Blocked on I/O
or
Synchronized
\ another thread closes socket /
(Diagram sourced from: http://www.wilsonmar.com/1threads.htm)
= Runnable — waiting for its turn to be picked for execution by the thread scheduler based on thread priorities.
= Running: The processor is actively executing the thread code. It runs until it becomes blocked, or voluntarily
gives up its turn with this static method Thread.yield(). Because of context switching overhead, yield() should
not be used very frequently.
= Waiting: A thread is in a blocked state while it waits for some external processing such as file I/O to finish.
= Sleeping: Java threads are forcibly put to sleep (suspended) with this overloaded method:
Thread.sleep(milliseconds), Thread.sleep(milliseconds, nanoseconds);
= Blocked on I/0O: Will move to runnable after I/O condition like reading bytes of data etc changes.
= Blocked on synchronization: Will move to Runnable when a lock is acquired.
= Dead: The thread is finished working.
Q 45: What is_the difference between yield and sleeping? What is the difference between the methods sleep() and
wait()?
A 45: When a task invokes yield(), it changes from running state to runnable state. When a task invokes sleep(), it
changes from running state to waiting/sleeping state.
The method wait(1000), causes the current thread to sleep up to one second. A thread could sleep less than 1
second if it receives the notify() or notifyAll() method call. Refer Q48 in Java section on thread communication.
The call to sleep(1000) causes the current thread to sleep for exactly 1 second.
Q 46: How does thread synchronization occurs inside a monitor? What levels of synchronization can you apply? What is
the difference between synchronized method and synchronized block? FAQ
A 46: In Java programming, each object has a lock. A thread can acquire the lock for an object by using the

synchronized keyword. The synchronized keyword can be applied in method level (coarse grained lock — can
affect performance adversely) or block level of code (fine grained lock). Often using a lock on a method level is
too coarse. Why lock up a piece of code that does not access any shared resources by locking up an entire

Java - Fundamentals 59

method. Since each object has a lock, dummy objects can be created to implement block level synchronization.
The block level is more efficient because it does not lock the whole method.

class MethodLevel { class BlockLevel {
/Ishared among threads /Ishared among threads
SharedResource X, Y ; SharedResource X,y ;
//[dummy objects for locking
pubic void synchronized method1() { Object xLock = new Object(), yLock = new Object();
/Imultiple threads can't access
} pubic void method1() {
synchronized(xLock){
pubic void synchronized method2() { Ilaccess x here. thread safe
/Imultiple threads can't access }
) /ldo something here but don't use SharedResource x,y
public void method3() { /I because will not be thread-safe
//not synchronized
//Imultiple threads can access synchronized(xLock) {
} synchronized(yLock) {
} /laccess x,y here. thread safe
}
}

/Ido something here but don't use SharedResource X,y
/Ibecause will not be thread-safe
Ylend of method1

The JVM uses locks in conjunction with monitors. A monitor is basically a guardian who watches over a sequence
of synchronized code and making sure only one thread at a time executes a synchronized piece of code. Each
monitor is associated with an object reference. When a thread arrives at the first instruction in a block of code it
must obtain a lock on the referenced object. The thread is not allowed to execute the code until it obtains the lock.
Once it has obtained the lock, the thread enters the block of protected code. When the thread leaves the block, no
matter how it leaves the block, it releases the lock on the associated object.

Q. Why synchronization is important? Without synchronization, it is possible for one thread to modify a shared
object while another thread is in the process of using or updating that object’s value. This often causes dirty data
and leads to significant errors. The disadvantage of synchronization is that it can cause deadlocks when two
threads are waiting on each other to do something. Also synchronized code has the overhead of acquiring lock,
which can adversely affect the performance.

Q. What is a ThreadLocal class? ThreadlLocal is a handy class for simplifying development of thread-safe
concurrent programs by making the object stored in this class not sharable between threads. ThreadLocal class
encapsulates non-thread-safe classes to be safely used in a multi-threaded environment and also allows you to
create per-thread-singleton. |[For ThreadLocal examplei Refer Q15 (What is a Session?) in Emerging
Technologies/Frameworks section. Refer Q51 in Java section for singleton design pattern.

Q47:
AA4T:

What is a daemon thread?

Daemon threads are sometimes called "service" or “background” threads. These are threads that normally run at a
low priority and provide a basic service to a program when activity on a machine is reduced. An example of a
daemon thread that is continuously running is the garbage collector thread. The JVM exits whenever all non-
daemon threads have completed, which means that all daemon threads are automatically stopped. To make a
thread as a daemon thread in Java - myThread. setDaemon (true) ;

Q 48:

A 48:

How can threads communicate with each other? How would you implement a producer (one thread) and a
consumer (another thread) passing data (via stack)?

The wait(), notify(), and notifyAll() methods are used to provide an efficient way for threads to communicate with
each other. This communication solves the ‘consumer-producer problem’. This problem occurs when the
producer thread is completing work that the other thread (consumer thread) will use.

60 Java - Fundamentals

If you imagine an application in which one thread (the producer) writes data to a file while a second
thread (the consumer) reads data from the same file. In this example the concurrent threads share the same
resource file. Because these threads share the common resource file they should be synchronized. Also these
two threads should communicate with each other because the consumer thread, which reads the file, should wait
until the producer thread, which writes data to the file and notifies the consumer thread that it has completed its
writing operation.

Let's look at a sample code where count is a shared resource. The consumer thread will wait inside the
consume() method on the producer thread, until the producer thread increments the count inside the produce()
method and subsequently notifies the consumer thread. Once it has been notified, the consumer thread waiting
inside the consume() method will give up its waiting state and completes its method by consuming the count (i.e.
decrementing the count).

Thread communication (Consumer vs Producer threads)

Class ConsumerProducer {
private int count;

public synchronized void consume(){
while(count == 0) {
try {
wait()
}
catch(InterruptedException ie) {
//keep trying
}
}
count --; //consumed

}

private synchronized void produce(){
count+ +;

notify(); // notify the consumer that count has been incremented.

N _

For regular classes you can use the Observer interface and the Observable class to implement the
consumer/producer communications with a model/view/controller architecture. The Java programming language
provides support for the Model/View/Controller architecture with two classes:

e Observer -- any object that wishes to be notified when the state of another object changes.
e Observable -- any object whose state may be of interest, and in whom another object may register an interest.

They are suitable for any system wherein objects need to be automatically notified of changes that occur in other
objects. @ Your ConfigMgr class can be notified to reload resource properties on change to *.properties file(s).

Q. What does join() method do? t.join () allows the current thread to wait indefinitely until thread “t” is finished.
t.join (5000) allows the current thread to wait for thread “t” to finish but does not wait longer than 5 seconds.

try {
t.join(5000); //current thread waits for thread “t” to complete but does not wait more than 5 sec
if (t.isAlive ()) {
//timeout occurred. Thread “t” has not finished
}
else {
//thread “t” has finished
}
}

Java - Fundamentals 61

Q 49: If 2 different threads hit 2 different synchronized methods in an object at the same time will they both continue?
A 49: No. Only one method can acquire the lock.
/ Thread synchronization \
Thread1
run(){ Car1 object
carl.method2(); Lok mon 3 synchronized method1() {}
} - method1() js not bugy.==="""
“0620.\5bu - synchronized method2() {}
et
Thread2 2.No: method3() {}
Ot gt is not synchfo“‘zed
carl.method1 () &= K method30) 1S n
car2.method1();@—_| 4. Aways°"
carl.method3()@— | 3.
} () ok. Methodz() i not busy Car2 object
> synchronized method1()
Thread3
ron e Mo methad 10 s busy. = Sdpsynchronized method2()
car2.method2();\o&&F---—""""")
car2.method3(); 6.Always ok. method3() is not synchronized ———» method3() {}
_L J
If your job requires deeper understanding of threads then please refer to the following articles by Allen Holub at
http://www.javaworld.com. There are number of parts (part 1 — Part - 8) to the article entitted “Programming Java threads in
the real world”. URLs for some of the parts are: http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html,
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-toolbox.html, etc.
Q 50: Explain threads blocking on 1/0?
A 50: Occasionally threads have to block on conditions other than object locks. 1/0 is the best example of this. Threads

block on I/O (i.e. enters the waiting state) so that other threads may execute while the I/O operation is performed.
When threads are blocked (say due to time consuming reads or writes) on an I/O call inside an object’s
synchronized method and also if the other methods of the object are also synchronized then the object is
essentially frozen while the thread is blocked.

Be sure to not synchronize code that makes blocking calls, or make sure that a non-synchronized method
exists on an object with synchronized blocking code. Although this technique requires some care to ensure that
the resulting code is still thread safe, it allows objects to be responsive to other threads when a thread holding its
locks is blocked.

Note: The java.nio.* package was introduced in JDK1.4. The coolest addition is non-blocking 1/0 (aka NIO that stands for New
1/0). Refer Q24 in Java section for NIO.

| Note: Q51 & Q52 in Java section are very popular questions on design patterns.

Q 51:
A 51:

What is a singleton pattern? How do you code it in Java? m m

A singleton is a class that can be instantiated only one time in a JVM per class loader. Repeated calls always
return the same instance. Ensures that a class has only one instance, and provide a global point of access. It
can be an issue if singleton class gets loaded by multiple class loaders or JVMs.

public class OnlyOne {
private static OnlyOne one = new OnlyOne () ;
// private constructor. This class cannot be instantiated from outside and
// prevents subclassing.
private OnlyOne () {}
public static OnlyOne getlInstance() {

return one;

}

62

Java - Fundamentals

To use it:

//No matter how many times you call, you get the same instance of the object.

OnlyOne myOne = OnlyOne.getInstance();

The constructor must be explicitly declared and should have the private access modifier, so that it cannot
be instantiated from out side the class. The only way to instantiate an instance of class OnlyOne is through the
getinstance() method with a public access modifier.

Q. When to use: Use it when only a single instance of an object is required in memory for a single point of
access. For example the following situations require a single point of access, which gets invoked from various
parts of the code.

] Accessing application specific properties through a singleton object, which reads them for the first time from
a properties file and subsequent accesses are returned from in-memory objects. Also there could be
another piece of code, which periodically synchronizes the in-memory properties when the values get
modified in the underlying properties file. This piece of code accesses the in-memory objects through the
singleton object (i.e. global point of access).

] Accessing in-memory object cache or object pool, or non-memory based resource pools like sockets,
connections etc through a singleton object (i.e. global point of access).

Q. What is the difference between a singleton class and a static class? Static class is one approach to make a class
singleton by declaring all the methods as static so that you can’t create any instance of that class and can call the static methods
directly.

Q 52:
A 52:

What is a factory pattern? m

A Factory method pattern (aka Factory pattern) is a creational pattern. The creational patterns abstract the
object instantiation process by hiding how the objects are created and make the system independent of the object
creation process. An Abstract factory pattern is one level of abstraction higher than a factory method pattern,
which means it returns the factory classes.

Factory method pattern (aka Factory pattern) Abstract factory pattern

Factory for what? Factory pattern returns one of the
several product subclasses. You should use a factory
pattern If you have a super class and a number of sub-
classes, and based on some data provided, you have to
return the object of one of the subclasses. Let’s look at
a sample code:

/ Factory pattern \
Factory Product hierachy
<<abstract>>
ShapeFactory Shape
+getShape(int shapeld)() +draw()
SimpleShapeFactory Circle Square
+getShape (int shapeld)()| [+draw() +draw()
T T 7N)
I e | |
I

public interface Const {
public static final int SHAPE_CIRCLE =1;
public static final int SHAPE_SQUARE =2;
public static final int SHAPE_HEXAGON =3;
}

An Abstract factory pattern is one level of abstraction higher than
a factory method pattern, which means the abstract factory
returns the appropriate factory classes, which will later on
return one of the product subclasses. Let's look at a sample code:

public class ComplexShapeFactory extends ShapeFactory {
throws BadShapeException {
public Shape getShape(int shapeTypeld){
Shape shape = null;
if(shapeTypeld == Const. SHAPE_HEXAGON) {
shape = new Hexagon();//complex shape

else throw new BadShapeException
(“shapeTypeld=" + shapeTypeld);
return shape;

}
}

Now let's look at the abstract factory, which returns one of the
types of ShapeFactory:

public class ShapeFactoryType
throws BadShapeFactoryException {

public static final int TYPE_SIMPLE = 1;
public static final int TYPE_COMPLEX = 2;

public ShapeFactory getShapeFactory(int type) {
ShapeFactory sf = null;

if(type == TYPE_SIMPLE) {

Java - Fundamentals

63

public class ShapeFactory {
public abstract Shape getShape(int shapeld);

}

public class SimpleShapeFactory extends
ShapeFactory throws BadShapeException {
public Shape getShape(int shapeTypeld){
Shape shape = null;
if(shapeTypeld == Const.SHAPE_CIRCLE) {
/lin future can reuse or cache objects.
shape = new Circle();

}

else if(shapeTypeld == Const. SHAPE_SQUARE) {
/lin future can reuse or cache objects
shape = new Square();

else throw new BadShapeException
(“ShapeTypeld="+ shapeTypeld);

return shape;
}
}

Now let's look at the calling code,
factory:

which uses the

ShapeFactory factory = new SimpleShapeFactory();

llIreturns a Shape but whether it is a Circle or a
lISquare is not known to the caller.

Shape s = factory.getShape(1);

s.draw(); // circle is drawn

llIreturns a Shape but whether it is a Circle or a
lISquare is not known to the caller.

sf = new SimpleShapeFactory();

}
else if (type == TYPE_COMPLEX) {
sf = new ComplexShapeFactory();

else throw new BadShapeFactoryException(“No factory!!”);

return sf;

}
}

Now let’s look at the calling code, which uses the factory:

ShapeFactoryType abFac = new ShapeFactoryType();
ShapeFactory factory = null;
Shape s = null;

lIreturns a ShapeFactory but whether it is a
lISimpleShapeFactory or a ComplexShapeFactory is not
llknown to the caller.

factory = abFac.getShapeFactory(1);//returns SimpleShapeFactory

lIreturns a Shape but whether it is a Circle or a Pentagon is
/Inot known to the caller.

s = factory.getShape(2); //returns square.
s.draw(); //draws a square

lIreturns a ShapeFactory but whether it is a
lISimpleShapeFactory or a ComplexShapeFactory is not
llknown to the caller.

factory = abFac.getShapeFactory(2);
lIreturns a Shape but whether it is a Circle or a Pentagon is
/Inot known to the caller.

s = factory.getShape(2);
s.draw(); //Square is drawn

s = factory.getShape(3); //returns a pentagon.
s.draw(); //draws a pentagon

Q. Why use factory pattern or abstract factory pattern? Factory pattern returns an instance of several (product
hierarchy) subclasses (like Circle, Square etc), but the calling code is unaware of the actual implementation class.
The calling code invokes the method on the interface for example Shape and using polymorphism the correct
draw() method gets invoked [Refer Q10 in Java section for polymorphism]. So, as you can see, the factory pattern
reduces the coupling or the dependencies between the calling code and called objects like Circle, Square etc. This
is a very powerful and common feature in many frameworks. You do not have to create a new Circle or a new
Square on each invocation as shown in the sample code, which is for the purpose of illustration and simplicity. In
future, to conserve memory you can decide to cache objects or reuse objects in your factory with no changes
required to your calling code. You can also load objects in your factory based on attribute(s) read from an external
properties file or some other condition. Another benefit going for the factory is that unlike calling constructors
directly, factory patterns have more meaningful names like getShape(...), getinstance(...) etc, which may make
calling code more clear.

Q. Can we use the singleton pattern within our factory pattern code? Yes. Another important aspect to
consider when writing your factory class is that, it does not make sense to create a new factory object for each
invocation as it is shown in the sample code, which is just fine for the illustration purpose.

ShapeFactory factory = new SimpleShapeFactory() ;

To overcome this, you can incorporate the singleton design pattern into your factory pattern code. The singleton
design pattern will create only a single instance of your SimpleShapeFactory class. Since an abstract factory
pattern is unlike factory pattern, where you need to have an instance for each of the two factories (i.e.
SimpleShapeFactory and ComplexShapeFactory) returned, you can still incorporate the singleton pattern as an
access point and have an instance of a HashMap, store your instances of both factories. Now your calling method
uses a static method to get the same instance of your factory, hence conserving memory and promoting object
reuse:

ShapeFactory factory =
factory.getShape () ;

ShapeFactory. getFactoryInstance();//returns a singleton

64 Java - Fundamentals

Note: Since questions on singleton pattern and factory pattern are commonly asked in the interviews, they are included as part
of this section. To learn more about design patterns refer Q11, Q12 in How would you go about section...?

Q 53: What is a socket? How do you facilitate inter process communication in Java?

A 53: A socket is a communication channel, which facilitates inter-process communication (For example
communicating between two JVMs, which may or may not be running on two different physical machines). A
socket is an endpoint for communication. There are two kinds of sockets, depending on whether one wishes to
use a connectionless or a connection-oriented protocol. The connectionless communication protocol of the
Internet is called UDP. The connection-oriented communication protocol of the Internet is called TCP. UDP
sockets are also called datagram sockets. Each socket is uniquely identified on the entire Internet with two
numbers. The first number is a 32-bit (IPV4 or 128-bit is IPV6) integer called the Internet Address (or IP address).
The second number is a 16-bit integer called the port of the socket. The IP address is the location of the machine,
which you are trying to connect to and the port number is the port on which the server you are trying to connect is
running. The port numbers 0 to 1023 are reserved for standard services such as e-mail, FTP, HTTP etc.

/ Sockets \

Sending Process(JVM) Receiving Process(JVM)
port: 6678 sockets IP address: 127.0.0.1
port: 6678
~
Operating System N Operating System

\ LNetwork communication /

The lifetime of the socket is made of 3 phases: Open Socket = Read and Write to Socket = Close Socket

To make a socket connection you need to know two things: An IP address and port on which to listen/connect. In
Java you can use the Socket (client side) and ServerSocket (Server side) classes.

Q 54: How will you call a Web server from a stand alone Java application/Swing client/Applet?
A 54: Using the java.net.URLConnection and its subclasses like HttpURLConnection and JarURLConnection.

URLConnection HttpClient (i.e. a browser)

Supports HEAD, GET, POST, PUT, DELETE, TRACE and Supports HEAD, GET, POST, PUT, DELETE, TRACE and
OPTIONS OPTIONS.

Does not support cookies. Does support cookies.

Can handle protocols other than http like ftp, gopher, mailto Handles only http.

and file.

public class TestServletWriter ({
public static void main(String[] args)throws Exception({

String host = "localhost"; //i.e 127.0.0.1
String protocol = "http"; //request/response paradigm
int port = 18080;
String strURL = protocol + "://" + host + ":" + port + "/myRootContext/myServlet";

java.net.URL servletURL = new java.net.URL (strURL) ;

java.net.URLConnection con = servletURL.openConnection() ;

con.setDoInput (true) ;

con.setDoOutput (true) ;

con.setUseCaches (false) ;
con.setRequestProperty ("Content-Type", "application/x-www-form-urlencoded") ;

// Write the arguments as post data
ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream()) ;

out.writeObject ("Hello Servlet"); //write a serializable object to the servlet.
out.flush ()
out.close() ;

Java - Fundamentals 65

ObjectInputStream ois = new ObjectInputStream(con.getInputStream());//this line is a must
// even if you have nothing to read back from the web server because http is a
// request/response paradigm.

String msg = (String)ois.readObject();
System.out.println (msg) ;

}

Sun provides JSSE (Java Secure Socket Extension) as the technology to accomplish HTTPS over the Web.

This section would not be complete without discussing some of the exciting changes in the J2SE external version 5.0 and
the internal version 1.5.0 (“Tiger”) release.

Q 55: Explain some of the new features in J2SE 5.0, which improves ease of development? m

A 55: The J2SE 5.0 release is focused along the key areas of ease of development, scalability, performance, quality,
etc. The new features include generics, metadata (aka annotations), autoboxing and auto-unboxing of
primitive types, enhanced “for” loop, enumerated type, static import, C style formatted output, formatted
input, varargs, etc. The following code sample depicts some of these new features. Brief explanation follows the
sample code, so if you do not understand any part of the code, come back to it after reading the brief explanation.

package sample;

//static import
import static sample.SampleStaticValues.NUM ZERO;

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class CombinedNewFeatures {
enum OddEven {odd,even} //use of enum keyword. An enum is a special classs.

public static void main(String[] args) {

//read from keyboard using the java.util.Scanner
Scanner keyboard = new Scanner (System.in);

System.out.println ("Enter your first number?");
int il = keyboard.nextInt () ;

System.out.println ("Enter your second number?");
int i2 = keyboard.nextInt () ;

//using generics for type safety
List<Integer> numlList = new ArrayList<Integer>();

//using auto-boxing to convert primitive int il,i2 to wrapper Integer object.
numList.add (il) ;

numList.add (i2) ;

//numList.add ("just to prove type safety");//won't compile! Requires an Integer to be added

//":" should be read as "foreach". So should read as, foreach "num" value in numList.
for (Integer num : numList) {

//using auto-unboxing feature to convert wrapper Integer object "num" to primitive.
if (num >= 9) {

// C style printf. System.out.printf(String arg0, Object ...argl).

// this feature is possible due to var-args feature.

System.out.printf ("num is: %$1s, list size: %2s \n", num, numList.size());

//"%" symbol means we are using the format specifier, "1" means first arg.

// Refer java.util.Formatter class API for the format specification details.

}

//need not do SampleStaticValues.NUM ZERO due to static import feature
if (num % 2 == NUM ZERO) {
System.out.println("The num " + num +

is: " + OddEven.even) ;

}
else {

66 Java - Fundamentals

System.out.println ("The num " + num + " is: " + OddEven.odd) ;

}
CombinedNewFeatures cnf = new CombinedNewFeatures() ;

//invoking methods using varargs
cnf.addNumbers (il) ;
cnf.addNumbers (il,i2) ;
cnf.addNumbers (il,i2,5) ;

}

//method using varargs
public void addNumbers (Object ...args) {
int sum = 0;
for (Object object : args) {
sum += (Integer)object;
}

System.out.println("sum is " + sum);

@SuppressWarnings ("deprecation") //metatag (annotation)
public static void end() {
Thread.currentThread () .stop(); //stop() is a deprecated method

}

package sample;

public class SampleStaticValues {
public static int NUM ZERO = 0;
public static int NUM ONE = O;

package sample;
public class ExtendedCombinedNewFeatures extends CombinedNewFeatures ({

@Override //metatag. If you spell the methodName incorrectly, you will get a compile error.
public void addNumbers (Object ...args) {
//overrides baseclass methods

}

@Override //metatag
public void addValues (Object ...args) { //compile error! must override a superclass method

e
}

Scanner API provide a more robust mechanism for reading in data types rather than simply parsing strings from buffered
System.in calls. Prior to Scanner feature was introduced, to read from standard input it would be necessary to write
exception handling code and wrap an InputStreamReader and a BufferedReader around System.in. Scanner class
throws an unchecked exception InputMismatchException, which you could optionally catch. Scanner API simplifies your
code as follows:

Scanner keyboard = new Scanner (System.in); //no more wrapping with InputStreamReader and
//BufferedReader around System.in
System.out.println ("Enter your first number?");

int il = keyboard.nextInt () ; //no more parsing strings e.g. new Integer ("5").intValue();
System.out.println ("Enter your second number?");
int i2 = keyboard.nextInt () ; //no more parsing strings e.g. new Integer (str).intValue();

Generics allow you to pass types as arguments to classes just like values are passed to methods as parameters.
Generics are mainly intended for Java Collections API. The J2SE 5.0 compiler will check the type for you. So, the error
detection has been moved to compile time as opposed to runtime and ClassCastException is not likely to be thrown. It is
used in a typsafe manner and you do not have to cast when taking values out of the list.

List<Integer> numlList = new ArrayList<Integer> () ; //used in a typesafe way.
//numlList.add ("just to prove type safety"); //won't compile! An Integer value is required.

//Error detection has been moved to compile time as opposed to Runtime.
for (Integer num : numList) { //you do not have to cast when you take values out of the list.

Java - Fundamentals 67

}

Auto boxing/unboxing makes a programmer’s life easier by not having to write manual code for conversion between
primitive types such as int, float etc and wrapper types Integer, Float etc. The J2SE 5.0 will automatically box and unbox
this for you. So this is a convenience feature and is not a performance booster.

//using auto-boxing to convert primitive int il,i2 to wrapper Integer object.
numList.add (il); // no more code like -> numList.add(new Integer (il)); autoboxed for you
numList.add(i2); // no more code like -> numList.add(new Integer (i2)); autoboxed for you

for (Integer num : numList) {

//using auto-unboxing feature to convert wrapper Integer object "num" to primitive.
if(num >= 9){ // no more code like if (num.intValue() >= 9) unboxed for you

printf method (C style) takes the arguments of a format string and varargs format specifiers. The varargs feature
allows you to have as many format specifiers as you want. Refer java.util. Formatter API for format details. The printf()
feature would not be possible if not for varargs feature, which will be discussed next.

// System.out.printf (String arg0, Object ...argl).this feature is possible due to var-args feature.
System.out.printf ("num is: %$1s, list size: %2s \n", num, numList.size());//format specifiers in bold
//"%" symbol means we are using the format specifier, "1" means first arg.

//Refer java.util.Formatter class API for the format specification details.

Varargs enables the compiler to assemble the array for you based on the argument list you pass to a method. The three
periods next to the parameter type (e.g. public void myMethod(Object ... args)) denotes varargs. The type must be Object
and it must be the last argument or the only argument to the method. You can also pass primitive values due to the new
Autoboxing feature.

//method using varargs

public void addNumbers (Object ...args){ //only argument to the method. .. means varargs
int sum = 0;
for (Object object : args) { // compiler converts to an object array > Object[] args

sum += (Integer)object;

}

System.out.println("sum is " + sum);

The above method can be called following ways:

//invoking methods using varargs

cnf.addNumbers (il) ; // one arg -> gets converted to Object[] args of size 1
cnf.addNumbers (11,12) ; // two arguments -> gets converted to Object[] args of size 2
cnf.addNumbers (i1,12,5) ; // three arguments -> gets converted to Object[] args of size 3

The printf() method would not be possible, if not for varargs feature.

// C style printf. System.out.printf(String arg0, Object ...argl).
// this feature is possible due to var-args feature.
System.out.printf ("num is: %1s, list size: %$2s \n", num, numlList.size()); // two arguments

Static imports let you avoid qualifying static members with class names. Once the static member is imported then you
can use it in your code without the class name prefix.

//static import
import static sample.SampleStaticValues.NUM ZERO;

//need not do SampleConstants.NUM ZERO due to static import feature
if (num % 2 == NUM ZERO) {
System.out.println ("The num " + num + " is: " + OddEven.even) ;

}
package sample;
public class SampleStaticValues {

public static int NUM ZERO = 0;
public static int NUM ONE = 0;

68 Java - Fundamentals

Enhanced for loop eliminates error-proneness of iterators and does not require any index variables. Also known as a
“foreach” loop.

//":" should be read as "foreach". So should read as, foreach "num" value in numList.
for (Integer num : numList) { // no index variables.

}

Enumerated types are type safe and force users of your class to use one of the acceptable values. Using static final
integer values are type-unsafe and can lead to subtle bugs in your code as shown below:

public class PartyNeeds {
public static final int PLATES
public static final int CUPS =

= l;
2;

For simplicity assume that PartyNeeds has 2 values 1 for plates and 2 for cups, but nothing is stoping the programmer
from assigning any other values like 3 or 4.

int partyItem = 3; //oops not a proper value as per class PartyNeeds but can happen and go
//unnoticed

Enum will solve the above problem and it is a special type of class.
enum OddEven {odd,even} //use of “enum” keyword. An “enum” is a special classs.

if (num % 2 == NUM ZERO) {

System.out.println ("The num " + num + " is: " + OddEven.even) ;
}
else {

System.out.println ("The num " + num + " is: " + OddEven.odd) ;

}

Metadata lets you avoid writing boilerplate code, by enabling tools to generate it from annotations provided by the coder.
This is a declarative style programming.

public class CombinedNewFeatures {

public void addNumbers (Object ...args) {
int sum = 0;
for (Object object : args) {
sum += (Integer)object;
}

System.out.println("sum is " + sum);

}

Now, the subclass of the above class with the @Override annotation can be written as shown below. If you misspell the
overridden method name, you will get a compile error. This will safeguard your method from not being called at runtime.
By adding the @Override metatag, the compiler complaints if you do not actually perform an override.

package sample;
public class ExtendedCombinedNewFeatures extends CombinedNewFeatures {
@Override //metatag. If you spell the methodName incorrectly, you will get a compile error.

public void addNumbers (Object ...args) {
//overrides baseclass methods

}

@Override //metatag

public void addValues (Object ...args) { //compile error! must override a superclass method
/..

}

Java - Swing 69

Java — Swing

Q 56: What is the difference between AWT and Swing?

A 56: Swing provides a richer set of components than AWT. They are 100% Java-based. There are a few other
advantages to Swing over AWT:

Swing provides both additional components like JTable, JTree etc and added functionality to AWT-replacement
components.

Swing components can change their appearance based on the current “look and feel” library that's being used.
Swing components follow the Model-View-Controller (MVC) paradigm, and thus can provide a much more
flexible UI.

Swing provides “extras” for components, such as: icons on many components, decorative borders for
components, tool tips for components etc.

Swing components are lightweight (less resource intensive than AWT).

Swing provides built-in double buffering (which means an off-screen buffer [image] is used during drawing
and then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen).

Swing provides paint debugging support for when you build your own component i.e.-slow motion rendering.

Swing also has a few disadvantages:

If you're not very careful when programming, it can be slower than AWT (all components are drawn).
Swing components that look like native components might not behave exactly like native components.

Q 57: How will you go about building a Swing GUI client?
A 57: The steps involved in building a Swing GUI are:

Firstly, you need a container like a Frame, a Window, or an Applet to display components like panels, buttons,
text areas etc. The job of a container is to hold and display components. A container is also a component
(note: uses a composite design pattern). A JPanel is a container as well.

import javax.swing.JFrame;
import javax.swing.JTextArea;

public class MyFrame extends JFrame {

public static void main (String[] args) {
JFrame frame = new JFrame ("Frame Title");
...// rest of the code to follow

Create some components such as panels, buttons, text areas etc.

//create a component to add to the frame
final JTextArea comp = new JTextAreal();
JButton btn = new JButton ("click");

Add your components to your display area and arrange or layout your components using the LayoutManagers.
You can use the standard layout managers like FlowLayout, BorderLayout, etc. Complex layouts can be
simplified by using nested containers for example having JPanels within JPanels and each JPanel can use its
own LayoutManager. You can create components and add them to whichever JPanels you like and JPanels
can be added to the JFrame’s content pane.

// Add the component to the frame's content pane;

// by default, the content pane has a border layout
frame.getContentPane () .add (comp, BorderLayout.CENTER) ;
frame.getContentPane () .add (btn, BorderLayout.SOUTH) ;

Attach listeners to your components. Interacting with a Component causes an Event to occur. To associate a
user action with a component, attach a listener to it. Components send events and listeners listen for events.

70

Java - Swing

Different components may send different events, and require different listeners. The listeners are interfaces,
not classes.

//Anonymous inner class registering a listener
// as well as performing the action logic.
btn.addActionListener (new ActionListener () ({
public void actionPerformed (ActionEvent ae) ({
comp.setText ("Button has been clicked");
}
}) i

e Show the frame.

// set the frame size and Show the frame
int width = 300;

int height = 300;

frame.setSize (width, height);
frame.setVisible (true) ;

For Applets, you need to write the necessary HTML code.

Q 58:
A 58:

Explain the Swing Action architecture? m

The Swing Action architecture is used to implement shared behavior between two or more user interface
components. For example, the menu items and the tool bar buttons will be performing the same action no matter
which one is clicked. Another distinct advantage of using actions is that when an action is disabled then all the
components, which use the Action, become disabled.

The javax.swing.Action interface extends the ActionListener interface and is an abstraction of a
command that does not have an explicit Ul component bound to it. The Action architecture is an implementation of
a command design pattern. This is a powerful design pattern because it allows the separation of controller logic
of an application from its visual representation. This allows the application to be easily configured to use different
Ul elements without having to re-write the control or call-back logic.

Defining action classes:

class FileAction extends AbstractAction {
//Constructor
FileAction (String name) {
super (name) ;

}

public void actionPerformed (ActionEvent ae) {
//add action logic here
}
}

To add an action to a menu bar:

JMenu fileMenu = new JMenu (“File”);

FileAction newAction = new FileAction (“New”) ;

JMenultem item = fileMenu.add (newAction) ;

item.setAccelarator (KeyStroke.getKeyStroke ('N’, Event.CTRL MASK));

To add action to a toolbar

private JToolBar toolbar = new JToolBar();
toolbar.add (newAction) ;

So, an action object is a listener as well as an action.

Q 59:
A 59:

How does Swing painting happen? How will you improve the painting performance?

If you want to create your own custom painting code or troubleshoot your Swing components, then you need to
understand the basic concept of Swing painting.

e Swing GUI painting starts with the highest component that needs to be repainted and works it way down the
hierarchy of components. This painting process is coordinated by the AWT painting system, but Swing repaint

Java - Swing 71

manager and double-buffering code, which means an off-screen buffer [image] is used during drawing and
then the resulting bits are copied onto the screen. The resulting image is smoother, less flicker and quicker
than drawing directly on the screen.

Swing components generally repaint themselves whenever necessary. For example when you invoke the
setTextt() on a component etc. This happens behind the scenes using a callback mechanism by invoking the
repaint() method. If a component’s size or position needs to change then the call to revalidate() method
precedes the call to repaint() method.

Like event handling code, painting code executes on the event-dispatching thread (Refer Q62 in Java
Section). So while an event is being handled, no painting will occur and similarly while painting is happening
no events will take place.

You can provide your own painting by overriding the paintComponent() method. This is one of 3 methods
used by JComponents to paint themselves.

public class MyFramePainting extends JFrame {
public static void main(String[] args) {
JFrame frame = new JFrame ("Frame Title");

MyPanel panel = new MyPanel () ;

panel.setOpaque (true) ; //if opaque (i.e. solid) then Swing painting system
//does not waste time painting behind the component.

panel.setBackground (Color.white) ;

panel.setLayout (new FlowLayout()) ;

...//add to contentPane, display logic etc
}
public class MyPanel extends JPanel implements MouseListener({
Color col = Color.blue;

public void paintComponent (Graphics gr) {
super.paintComponent (gr) ;

gr.setColor (col) ;
gr.drawlLine (5,5, 200,200);
}

public MyPanel () {
addMouseListener (this); //i.e the Panel itself
}

public void mouseClicked (MouseEvent ev) {
col = Color.red;
repaint(); //invokes paintComponent (). Never invoke paintComponent () method directly

}

...//other mouse events like onMousePressed etc

}

By default, the paintComponent() method paints the background if the component is opaque, then it performs
any custom painting. The other two methods are paintBorder(Graphics g) and paintChildren(Graphics g),
which tells to paint any border and paint any components contained by this component respectively. You
should not invoke or override these two methods.

Q. How will you improve the painting performance?

On components with complex output, the repaint() method should be invoked with arguments which define
only the clip rectangle that needs updating (rectangle origin is on top left corner). No paintXXXX()
methods (including paint() method) should not be explicitly invoked. Only repaint() method can be explicitly
invoked (which implicitly calls paintComponent() method) and only paintComponent() should be overridden if
required.

public void mouseClicked (MouseEvent ev) {

col = Color.red;
repaint(0,0,50,50); //invokes paintComponent with a rectangle. The origin is at top left.

72 Java - Swing

e You should never turn off double buffering for any Swing components.
e The Swing painting efficiency can be optimized by the following two properties:

opaque: If the opaque (i.e. solid) property is set to true with myComponent.setOpaque(true) then the Swing
painting system does not have to waste time trying to paint behind the component hence improves

performance.
/ Swing containment hierarchy using JPanels within JPanels and the painting process \
Top-level container paints itself
P p } JFrame ‘

. L . o l:| Opaque (solid)
First paints its solid grey background and then tells the JPanel to paint itself. If -
the content pane is not opaque then messy repaints will occur. \ Content pane ‘ Non-opaque

‘ l:| (transparent)

We could make a JPanel a content pane by setting setOpaque(true). This will ‘
remove unnecessary painting of the container content pane. JPanel - 1 (opaque)
(using say BorderLayout)

If JPanel is opaque (e.g. JPanel -2) , it paints its
background first & then the JPanel-2 asks its children
JButton 1 and JButton 2 to paint themselves.

If JPanel is non-opaque (e.g. JPanel 4), It looks up the
containment hierarchy to find the closest opaque ‘
component (i.e. JPanel - 1). The opaque container JPanel ‘

-1 paints itself first and then ask its children JPanel -4 and Jpanel - 2 (opaque) JPanel - 3 (opaque) JPag(;L—qt‘(;;on-
JLabel to paint themselves. (using say GridLayout) B(E?dsg:l?asy?)};t) (using say FlowLayout)

Opaque components like JButton 1, JButton 2 etc paint ‘
themselves when repaint() method is called.

Non-opaque components like JLabel, look up its hierarchy
to find the closest opaque component, which is Jpanel-1
(because JPanel - 4 is opaque as well). The JPanel -1

aints itself first and then ask its children JPanel - 4 and -
.’}Llabellto pairl1t themselves. I I ‘ ko ‘ ‘ <Litiiten 2 ‘ JTextField JLabel /

optimizedDrawingEnabled: This is a read only property (isOptimizedDrawingEnabled()) in JComponent, so
the only way components can change the default value is to subclass and override this method to return the
desired value. It's always possible that a non-ancestor component in the containment tree could overlap your
component. In such a case the repainting of a single component within a complex hierarchy could require a lot
of tree traversal to ensure 'correct' painting occurs.

true: The component indicates that none of its immediate children overlap.
false: The component makes no guarantees about whether or not its immediate children overlap

Q 60: If you add a component to the CENTER of a border layout, which directions will the component stretch? m
A 60: The component will stretch both horizontally and vertically. It will occupy the whole space in the middle.

Q 61: What is the base class for all Swing components?

A 61:
As you can see from the diagram below, containers collect components. Sometimes you want to
add a container to another container. So, a container should be a component. For example
container.getPreferredSize() invokes getPreferredSize() of all contained components. Composite design pattern
is used in GUI components to achieve this. A composite object is an object, which contains other objects.
Composite design pattern manipulates composite objects just like you manipulate individual components. Refer
Q11 in How would you go about...? section.

Java - Swing 73

/ Composite Design Pattern \

Component

-------- >

+operation1()

+operation2()
L /N / _I Composite
Leaf
+operation1() 1
+operation1() +operation2()
+operation2() +addComponent()
+removeComponent()

N /

All the Swing components start with ‘J’. The hierarchy diagram is shown below. JComponent is the base class.

Swing Hierarchy \

Component

JLabel

A

ainer JList

JComponent JMenuBar

Window
JOptionPane
JPanel
< JFrame > JDialog

Y

JScrollBar

A
Applet
A
JApplet
AbstractButton
k JToggleButton JButton JMenultem

(Diagram source: http://www.particle.kth.se/~fmi/kurs/PhysicsSimulation/Lectures/07A/swingDesign.html)

1

Q 62: Explain the Swing event dispatcher mechanism? FAQ

A 62: Swing components can be accessed by the Swing event dispatching thread. A few operations are guaranteed to
be thread-safe but most are not. Generally the Swing components should be accessed through this event-
dispatching thread. The event-dispatching thread is a thread that executes drawing of components and event-
handling code. For example the paint() and actionPerformed() methods are automatically executed in the event-
dispatching thread. Another way to execute code in the event-dispatching thread from outside event-handling or

74 Java - Swing
drawing code, is using SwingUtilities invokeLater() or invokeAndWait() method. Swing lengthy initialization
tasks (e.g. /O bound and computationally expensive tasks), should not occur in the event-dispatching
thread because this will hold up the dispatcher thread. If you need to create a new thread for example, to
handle a job that's computationally expensive or I/O bound then you can use the thread utility classes such as
SwingWorker or Timer without locking up the event-dispatching thread.
e SwingWorker — creates a background thread to execute time consuming operations.
e Timer — creates a thread that executes at certain intervals.
However after the lengthy initialization the GUI update should occur in the event dispatching thread, for thread
safety reasons. We can use invokelLater() to execute the GUI update in the event-dispatching thread. The other
scenario where invokeLater() will be useful is that the GUI must be updated as a result of non-AWT event.
Q 63: What do you understand by MVC as used in a JTable? FAQ
A 63: MVC stands for Model View Controller architecture. Swing “J” components (e.g. JTable, JList, JTree etc) use a
modified version of MVC. MVC separates a model (or data source) from a presentation and the logic that
manages it.
/ Swing MVC architecture (e.g. JTable) \
Component
(Eg: JTable):View & controller
Model ul
Eg: TableModel UlDelegate ~=-> Manager
for JTable look-and-feel
e Component (e.g. JTable, JTree, and JList): coordinates actions of model and the Ul delegate. Each generic
component class handles its own individual view-and-controller responsibilities.
e Model (e.g. TableModel): charged with storing the data.
¢ UlDelegate: responsible for getting the data from model and rendering it to screen. It delegates any look-and-
feel aspect of the component to the Ul Manager.
Q 64: Explain layout managers?
A 64: Layout managers are used for arranging GUI components in windows. The standard layout managers are:

e FlowLayout: Default layout for Applet and Panel. Lays out components from left to right, starting new rows if
necessary.

e BorderLayout: Default layout for Frame and Dialog. Lays out components in north, south, east, west and
center. All extra space is placed on the center.

e CardLayout: stack of same size components arranged inside each other. Only one is visible at any time. Used
in TABs.

e GridLayout: Makes a bunch of components equal in size and displays them in the requested number of rows
and columns.

e GridBagLayout: Most complicated but the most flexible. It aligns components by placing them within a grid of
cells, allowing some components to span more than one cell. The rows in the grid aren’t necessarily all the
same height, similarly, grid columns can have different widths as well.

Java - Swing 75

e BoxLayout: is a full-featured version of FlowLayout. It stacks the components on top of each other or places
them in a row.

Complex layouts can be simplified by using nested containers for example having panels within panels and each
panel can use its own LayoutManager. It is also possible to write your own layout manager or use manual
positioning of the GUI components. Note: Further reading on each LayoutManagers is recommended for Swing
developers.

The AWT containers like panels, dialog boxes, windows etc do not perform the actual laying out
of the components. They delegate the layout functionality to layout managers. The layout managers make use of
the strategy design pattern, which encapsulates family of algorithms for laying out components in the containers.
If a particular layout algorithm is required other than the default algorithm, an appropriate layout manager can be
instantiated and plugged into the container. For example, panels by default use the FlowLayout but it can be
changed by executing:

panel.setLayout (new GridLayout(4,5));

This enables the layout algorithms to vary independently from the containers that use them. This is one of the key
benefits of the strategy pattern.

Q 65:
A 65:

Explain the Swing delegation event model?

In this model, the objects that receive user events notify the registered listeners of the user activity. In most cases
the event receiver is a component.

e Event Types: ActionEvent, KeyEvent, MouseEvent, WindowEvent etc.
e Event Processors: JButton, JList etc.
o EventListeners: ActionListener, ComponentListener, KeyListener etc.

/ Swing Event Delegation Model \

EVENT

- distributed

EVENT PROCESSOR
N (eg JButton, JList etc)

registers

(eg ActionListener etc)

—
8
!‘g
N EVENT LISTENER «

76 Java - Applet

Java — Applet

Q 66: How will you initialize an applet?

A 66: By writing your initialization code in the applet’s init() method or applet’s constructor.
Q 67: What is the order of method invocation in an applet? m

A 67: The Applet's life cycle methods are as follows:

e public void init() : Initialization method called only once by the browser.

e public void start() : Method called after init() and contains code to start processing. If the user leaves the
page and returns without killing the current browser session, the start () method is called without being
preceded by init ().

e public void stop() : Stops all processing started by start (). Done if user moves off page.

e public void destroy() : Called if current browser session is being terminated. Frees all resources used by the
applet.

Q 68: How would you communicate between applets and servlets? m
A 68: We can use the java.net.URLConnection and java.net.URL classes to open a standard HTTP connection and

“tunnel” to a Web server. The server then passes this information to the servlet. Basically, the applet pretends to

be a Web browser, and the servlet doesn’t know the difference. As far as the servlet is concerned, the applet is

just another HTTP client. Applets can communicate with servlets using GET or POST methods.

The parameters can be passed between the applet and the servlet as name value pairs.

http://www.foo.com/servlet/TestServiet?LastName=Jones&FirstName=Joe).

Objects can also be passed between applet and servlet using object serialization. Objects are serialized to and

from the inputstream and outputstream of the connection respectively.

Q 69: How will you communicate between two Applets? m
A 69: All the applets on a given page share the same AppletContext. We obtain this applet context as follows:

AppletContext ac = getAppletContext () ;

AppletContext provides applets with methods such as getApplet(name), getApplets(), getAudioClip(url),

getimage(url), showDocument(url) and showStatus(status).

Q 70: What is a signed Applet? [LF|[SE] Z¥8
A 70: A signed Applet is a trusted Applet. By default, and for security reasons, Java applets are contained within a

“sandbox”. Refer to the diagram below:

This means that the applets can’t do anything, which might be construed as threatening to the user’'s machine
(e.g. reading, writing or deleting local files, putting up message windows, or querying various system parameters).
Early browsers had no provisions for Java applets to reach outside of the sandbox. Recent browsers, however
(Internet Explorer 4 on Windows etc), have provisions to give “trusted” applets the ability to work outside the
sandbox. For this power to be granted to one of your applets, the applet’s code must be digitally signed with your
unforgeable digital ID, and then the user must state that he trusts applets signed with your ID. The untrusted
applet can request to have privileges outside the sandbox but will have to request the user for privileges every
time it executes. But with the trusted applet the user can choose to remember their answer to the request, which
means they won'’t be asked again.

Java - Applet

\

Signed Applet

localcode RemoteCode

\ Signed unsigned

T

JYM
Sandbox
@O O
OQd:P

Valuable resources like files

etc

7

Q 71: What is the difference between an applet and an application? Can you use an applet as an application?

AT1:

Application

Applet
Applets don’t have a main method. They operate on life
cycle methods init(), start(), stop(), destroy() etc.

Has a static main() method.

Applets can be embedded in HTML pages and
downloaded over the Internet. Has a sandbox security
model.

Has no support for embedding or downloading. Has
no inherent security restriction.

Can only be executed within a Java compatible
container like browser, appletviewer etc.

Applications are executed at command line by java
tool.

Q. Can you use an applet as an application? Yes, by adding a main(String[] args) method to an applet.

Tech Tip #1:

-- If you want to create a new list (i.e. using java.util.List) of items from an array of objects, then it is more efficient and it is
a best practice to use Arrays.asList(...) method as opposed to executing in a loop and copying all elements of an array
one by one.

-- If you want to copy data from one array to another array then it is faster and it is a best practice to use
System.arraycopy(...) method as opposed to executing in a loop and copying all elements of an array one by one.

Q. Which of the following approaches would you prefer and why?

Approach-1
if (“Peter”.equals (name)) {
// ..
}
Approach-2
if (name.equals (“Peter”)) {
{ f oo

}

Approach-1 is preferred because the Approach-2 can throw a java.lang.NullPointerException if name is null.

78

Java — Performance and Memory issues

Java — Performance and Memory issues

Q. Give me an instance where you made a significant contribution in improving performance ?

There is a good chance that the position you are being interviewed for require someone with skills to identify performance
and/or memory issues and ability to optimize performance and solve memory issues. If you happen to be in an interview
with an organization facing serious issues with regards to their Java application relating to memory leaks, performance
problems or a crashing JVM etc then you are likely to be asked questions on these topics. You will find more questions
and answers relating to these key areas (i.e. performance and memory issues) in the Enterprise Java section and “How
would you go about...” sections. You could also demonstrate your skills in these key areas by reflecting back on your
past experiences as discussed in Q82 in Java section. Even though Q82 is a situational or behavioral question, you can
streamline your answer to demonstrate your technical strengths relating to these key areas as well as your behavioral
ability to cope with stress.

Q 72: How would you improve performance of a Java application? m

AT2:

Pool valuable system resources like threads, database connections, socket connections etc. Emphasize on
reuse of threads from a pool of threads. Creating new threads and discarding them after use can adversely
affect performance. Also consider using multi-threading in your single-threaded applications where possible to
enhance performance. Optimize the pool sizes based on system and application specifications and
requirements. Having too many threads in a pool also can result in performance and scalability problems
due to consumption of memory stacks (i.e. each thread has its own stack. Refer Q34, Q42 in Java section)
and CPU context switching (i.e. switching between threads as opposed to doing real computation.).

Minimize network overheads by retrieving several related items simultaneously in one remote invocation if
possible. Remote method invocations involve a network round-trip, marshaling and unmarshaling of
parameters, which can cause huge performance problems if the remote interface is poorly designed. (Refer
Q125 in Enterprise section).

Most applications need to retrieve data from and save/update data into one or more databases. Database calls
are remote calls over the network. In general data should be lazily loaded (i.e. load only when required as
opposed to pre-loading from the database with a view that it can be used later) from a database to conserve
memory but there are use cases (i.e. need to make several database calls) where eagerly loading data and
caching can improve performance by minimizing network trips to the database. Data can be eagerly loaded
with a help of SQL scripts with complex joins or stored procedures and cached using third party frameworks or
building your own framework. At this point your interviewer could intercept you and ask you some pertinent
questions relating to caching like:

Q: How would you refresh your cache?
A: You could say that one of the two following strategies can be used:

1. Timed cache strategy where the cache can be replenished periodically (i.e. every 30 minutes, every
hour etc). This is a simple strategy applicable when it is acceptable to show dirty data at times and also
the data in the database does not change very frequently.

2. Dirty check strategy where your application is the only one which can mutate (i.e. modify) the data in
the database. You can set a “isDirty” flag to true when the data is modified in the database through your
application and consequently your cache can be refreshed based on the “isDirty” flag.

Q: How would you refresh your cache if your database is shared by more than one application?
A: You could use one of the following strategies:

1. Database triggers: You could use database triggers to communicate between applications sharing the
same database and write pollers which polls the database periodically to determine when the cache
should be refreshed. (Refer Q102 in Enterprise section)

2. XML messaging (Refer Enterprise — JMS subsection in Enterprise section) to communicate between
other applications sharing the same database or separate databases to determine when the cache
should be refreshed.

Java — Performance and Memory issues 79

= Optimize your /0O operations: use buffering (Refer Q25 in Java section) when writing to and reading from
files and/or streams. Avoid writers/readers if you are dealing with only ASCII characters. You can use streams
instead, which are faster. Avoid premature flushing of buffers. Also make use of the performance and
scalability enhancing features such as non-blocking and asynchronous /O, mapping of file to memory etc
offered by the NIO (New 1/0).

= Establish whether you have a potential memory problem and manage your objects efficiently: remove
references to the short-lived objects from long-lived objects like Java collections etc (Refer Q73 in Java
section) to minimize any potential memory leaks. Also reuse objects where possible. It is cheaper to recycle
objects than creating new objects each time. Avoid creating extra objects unnecessarily. use
mutable StringBuffer/StringBuilder classes instead of immutable String objects in computation expensive loops
as discussed in Q21 in Java section and use static factory methods instead of constructors to recycle
immutable objects as discussed in Q16 in Java section. Automatic garbage collection is one of the most highly
touted conveniences of Java. However, it comes at a price. Creating and destroying objects occupies a
significant chunk of the JVM's time. Wherever possible, you should look for ways to minimize the number of
objects created in your code:

o For complex objects that are used frequently, consider creating a pool of recyclable objects rather than
always instantiating new objects. This adds additional burden on the programmer to manage the pool, but
in selected cases it can represent a significant performance gain. Use flyweight design pattern to create
a pool of shared objects. Flyweights are typically instantiated by a flyweight factory that creates a limited
number of flyweights based on some criteria. Invoking object does not directly instantiate flyweights. It
gets it from the flyweight factory, which checks to see if it has a flyweight that fits a specific criteria (e.g.
with or without GST etc) in the pool (e.g. HashMap). If the flyweight exists then return the reference to the
flyweight. If it does not exist, then instantiate one for the specific criteria and add it to the pool (e.g.
HashMap) and then return it to the invoking object.

o If repeating code within a loop, avoid creating new objects for each iteration. Create objects before
entering the loop (i.e. outside the loop) and reuse them if possible.

o Use lazy initialization when you want to distribute the load of creating large amounts of objects. Use lazy
initialization only when there is merit in the design.

= Where applicable apply the following performance tips in your code:

o Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc where possible. This is because the
methods in ArrayList, HashMap etc are not synchronized (Refer Q15 in Java Section). Even better is to
use just arrays where possible.

o Set the initial capacity of a collection (e.g. ArrayList, HashMap etc) and StringBuffer/StringBuilder
appropriately. This is because these classes must grow periodically to accommodate new elements. So,
if you have a very large ArrayList or a StringBuffer, and you know the size in advance then you can speed
things up by setting the initial size appropriately. (Refer Q17, Q21 in Java Section).

o Minimize the use of casting or runtime type checking like instanceof in frequently executed methods or
in loops. The “casting” and “instanceof’ checks for a class marked as final will be faster. Using
“instanceof” construct is not only ugly but also unmaintainable. Look at using visitor pattern (Refer Q11
in How would you go about...? section) to avoid “instanceof” constructs in frequently accessed methods.

o Do not compute constants inside a large loop. Compute them outside the loop. For applets compute it in
the init() method. Avoid nested loops (i.e. a “for” loop within another “for” loop etc) where applicable and
make use of a Collection class as discussed in “How can you code better without nested loops ?” --
Q17 in Java section.

o Exception creation can be expensive because it has to create the full stack trace. The stack trace is
obviously useful if you are planning to log or display the exception to the user. But if you are using your
exception to just control the flow, which is not recommended, then throw an exception, which is pre-
created. An efficient way to do this is to declare a public static final Exception in your exception class
itself.

o Avoid using System.out.printin and use logging frameworks like Log4J etc, which uses I/O buffers (Refer
Q25 in Java section).

o Minimize calls to Date, Calendar, etc related classes. [For example:

80

Java — Performance and Memory issues

//Inefficient code
public boolean isInYearCompanyWasEstablished (Date dateSupplied) {
Calendar cal = Calendar.getInstance();
cal.set (1998, Calendar.JAN, 01,0,0,0); //Should be read from a .proprerties file
Date yearStart = cal.getTime ()
cal.setTime (1998, Calendar.DECEMBER, 31,0,0,0);//Should be read from .properties.
Date yearEnd = cal.getTime () ;
return dateSupplied.compareTo (yearStart) >=0 &&
dateSupplied.compareTo (yearEnd) <= 0;

The above code is inefficient because every time this method is invoked 1 “Calendar” object and two
“Date” objects are unnecessarily created. If this method is invoked 50 times in your application then 50
“Calendar” objects and 100 “Date” objects are created. A more efficient code can be written as shown
below using a static initializer block:

llefficient code
private static final YEAR START;
private static final YEAR END;

static{
Calendar cal = Calendar.getInstance();
cal.set (1998, Calendar.JAN, 01,0,0,0); //Should be read from a .proprerties file
Date YEAR START = cal.getTime();
cal.setTime (1998, Calendar.DECEMBER, 31,0,0,0);//Should be read from .properties.
Date YEAR END = cal.getTime () ;

}
public boolean isInYearCompanyWasEstablished (Date dateSupplied) {

return dateSupplied.compareTo (YEAR START) >=0 &&
dateSupplied.compareTo (YEAR END) <= 0;

}

No matter, how many times you invoke the method isInYearCompanyWasEstablished(..), only 1
“Calendar” object 2 “Date” objects are created, since the static initializer block is executed only once
when the class is loaded into the JVM.

o Minimize JNI calls in your code.

Q. When in the development process should you consider performance issues?

Set performance requirements in the specifications, include a performance focus in the analysis and design and
also create a performance test environment.

Q. When designing your new code, what level of importance would you give to the following attributes?

-- Performance
-- Maintainability
-- Extendibility
-- Ease of use

-- Scalability

You should not compromise on architectural principles for just performance. You should make effort to write
architecturally sound programs as opposed to writing only fast programs. If your architecture is sound enough then
it would allow your program not only to scale better but also allows it to be optimized for performance if it is not fast
enough. If you write applications with poor architecture but performs well for the current requirements, what will
happen if the requirements grow and your architecture is not flexible enough to extend and creates a maintenance
nightmare where fixing a code in one area would break your code in another area. This will cause your application
to be re-written. So you should think about extendibility (i.e. ability to evolve with additional requirements),
maintainability, ease of use, performance and scalability (i.e. ability to run in multiple servers or machines) during
the design phase. List all possible design alternatives and pick the one which is conducive to sound design
architecturally (i.e. scalable, easy to use, maintain and extend) and will allow it to be optimized later if not fast
enough. You can build a vertical slice first to validate the above mentioned design attributes as discussed in Q82
in the Java section.

Java — Performance and Memory issues 81

Q. Rank the above attributes in order of importance?

There is no one correct answer for this question. [Hint] It can vary from application to application but typically if
you write 1 - extendable, 2 - maintainable and 3 — ease of use code with some high level performance
considerations, then it should allow you to optimize/tune for 4 - performance and 5 - scale. But if you write a code,
which only performs fast but not flexible enough to grow with the additional requirements, then you may end up re-
writing or carrying out a major revamp to your code. Refer SOA (Service Oriented Architecture) Q15 in How
would you go about... section.

Q 73: How would you detect and minimize memory leaks in Java? m
A 73: In Java, memory leaks are caused by poor program design where object references are long lived and the
garbage collector is unable to reclaim those objects.
Detecting memory leaks:
= Use tools like JProbe, Optimizelt etc to detect memory leaks.
= Use operating system process monitors like task manager on NT systems, ps, vmstat, iostat, netstat etc on
UNIX systems.
= Write your own utility class with the help of totalMemory() and freeMemory() methods in the Java Runtime
class. Place these calls in your code strategically for pre and post memory recording where you suspect to be
causing memory leaks. An even better approach than a utility class is using dynamic proxies (Refer Q11 in
How would you go about section...) or Aspect Oriented Programming (AOP) for pre and post memory
recording where you have the control of activating memory measurement only when needed. (Refer Q3 — Q5
in Emerging Technologies/Frameworks section).
Minimizing memory leaks:
In Java, typically memory leak occurs when an object of a longer lifecycle has a reference to objects of a short life cycle.
This prevents the objects with short life cycle being garbage collected. The developer must remember to remove the references
to the short-lived objects from the long-lived objects. Objects with the same life cycle do not cause any issues because the
garbage collector is smart enough to deal with the circular references (Refer Q38 in Java section).
= Design applications with an object'’s life cycle in mind, instead of relying on the clever features of the JVM.
Letting go of the object’s reference in one’s own class as soon as possible can mitigate memory problems.
myRef = null;
= Unreachable collection objects can magnify a memory leak problem. In Java it is easy to let go of an entire
collection by setting the root of the collection to null. The garbage collector will reclaim all the objects (unless
some objects are needed elsewhere).
= Use weak references (Refer Q37 in Java section) if you are the only one using it. The WeakHashMap is a
combination of HashMap and WeakReference. This class can be used for programming problems where you
need to have a HashMap of information, but you would like that information to be garbage collected if you are
the only one referencing it.
= Free native system resources like AWT frame, files, JNI etc when finished with them. Frame,
Dialog, and Graphics classes require that the method dispose() be called on them when they are no longer
used, to free up the system resources they reserve.
Q 74: Why does the JVM crash with a core dump or a Dr.Watson error? m
A 74: Any problem in pure Java code throws a Java exception or error. Java exceptions or errors will not cause a core

dump (on UNIX systems) or a Dr.Watson error (on WIN32systems). Any serious Java problem will result in an
OutOfMemoryError thrown by the JVM with the stack trace and consequently JVM will exit. These Java stack
traces are very useful for identifying the cause for an abnormal exit of the JVM. So is there a way to know that
OutOfMemoryError is about to occur? The Java J2SE 5.0 has a package called java.lang.management which
has useful JMX beans that we can use to manage the JVM. One of these beans is the MemoryMXBean.

An OutOfMemoryError can be thrown due to one of the following 4 reasons:

82

Java — Performance and Memory issues

JVM may have a memory leak due to a bug in its internal heap management implementation. But this is highly
unlikely because JVMs are well tested for this.

The application may not have enough heap memory allocated for its running. You can allocate more JVM
heap size (with —Xmx parameter to the JVM) or decrease the amount of memory your application takes to
overcome this. To increase the heap space:

java -Xms1024M -Xmx1024M

Care should be taken not to make the —Xmx value too large because it can slow down your application. The
secret is to make the maximum heap size value the right size.

Another not so prevalent cause is the running out of a memory area called the “perm” which sits next to the
heap. All the binary code of currently running classes is archived in the “perm” area. The ‘perm’ area is
important if your application or any of the third party jar files you use dynamically generate classes.
“perm” space is consumed when XSLT templates are dynamically compiled into classes, J2EE
application servers, JasperReports, JAXB etc use Java reflection to dynamically generate classes and/or
large amount of classes in your application. To increase perm space:

java -XX:PermSize=256M -XX:MaxPermSize=256M

The fourth and the most common reason is that you may have a memory leak in your application as
discussed in Q73 in Java section.

[Good read/reference: “Know your worst friend, the Garbage Collector” http://java.sys-
con.com/read/84695.htm by Romain Guy]

Q. So why does the JVM crash with a core dump or Dr.Watson error?

Both the core dump on UNIX operating system and Dr.Watson error on WIN32 systems mean the same thing. The
JVM is a process like any other and when a process crashes a core dump is created. A core dump is a memory
map of a running process. This can happen due to one of the following reasons:

Using JNI (Java Native Interface) code, which has a fatal bug in its native code. using Oracle OCI
drivers, which are written partially in native code or JDBC-ODBC bridge drivers, which are written in non Java
code. Using 100% pure Java drivers (communicates directly with the database instead of through client
software utilizing the JNI) instead of native drivers can solve this problem. We can use Oracle thin driver,
which is a 100% pure Java driver.

The operating system on which your JVM is running might require a patch or a service pack.

The JVM implementation you are using may have a bug in translating system resources like threads, file
handles, sockets etc from the platform neutral Java byte code into platform specific operations. If this JVM’s
translated native code performs an illegal operation then the operating system will instantly kill the
process and mostly will generate a core dump file, which is a hexadecimal file indicating program’s state
in memory at the time of error. The core dump files are generated by the operating system in response to
certain signals. Operating system signals are responsible for notifying certain events to its threads and
processes. The JVM can also intercept certain signals like SIGQUIT which is kill -3 < process id > from the
operating system and it responds to this signal by printing out a Java stack trace and then continue to run.
The JVM continues to run because the JVM has a special built-in debug routine, which will trap the signal -3.
On the other hand signals like SIGSTOP (kill -23 <process id>) and SIGKILL (kill -9 <process id>) will cause
the JVM process to stop or die. The following JVM argument will indicate JVM not to pause on SIGQUIT
signal from the operating system.

java —Xsgnopause

Java — Personal and Behavioral/Situational 83

Java — Personal and Behavioral/Situational

Q 75: Did you have to use any design patterns in your Java project? m

A 75: Yes. Refer Q12 [Strategy], Q16 [Iterator], Q24 [Decorator], Q36 [Visitor], Q51 [Singleton], Q52 [Factory],
Q58 [Command], Q61 [Composite], and Q63 [MVC-Model View Controller] in Java section and Q11, Q12 in
How would you go about... section for a detailed discussion on design patterns with class diagrams and
examples.

http://www.patterndepot.com/put/8/JavaPatterns.htm.

Why use design patterns, you may ask (Refer Q5 in Enterprise section). Design patterns are worthy of mention in
your CV and interviews. Design patterns have a number of advantages:

Capture design experience from the past.

Promote reuse without having to reinvent the wheel.
Define the system structure better.

Provide a common design vocabulary.

Some advice if you are just starting on your design pattern journey:

= If you are not familiar with UML, now is the time. UML is commonly used to describe patterns in pattern
catalogues, including class diagrams, sequence diagrams etc. (Refer Q106 - Q109 in Enterprise section).

= When using patterns, it is important to define a naming convention. It will be much easier to manage a project
as it grows to identify exactly what role an object plays with the help of a naming convention e.g.
AccountFacilityBusinessDelegate, AccountFacilityFactory, AccountFacilityValueObject, AccountDecorator,
AccountVisitor, AccountTransferObject (or AccountFacilityVO or AccountTO).

= Make a list of requirements that you will be addressing and then try to identify relevant patterns that are
applicable. You should not just apply a pattern for the sake of learning or applying a pattern because it could
become an anti-pattern.

IMPORTANT: Technical skills alone are not sufficient for you to perform well in your interviews and progress in your
career. Your technical skills must be complemented with business skills (i.e. knowledge/understanding of the business,
ability to communicate and interact effectively with the business users/customers, ability to look at things from the user’s
perspective as opposed to only technology perspective, ability to persuade/convince business with alternative solutions,
which can provide a win/win solution from users’ perspective as well as technology perspective), ability to communicate
effectively with your fellow developers, immediate and senior management, ability to work in a team as well as
independently, problem solving/analytical skills, organizational skills, ability to cope with difficult situations like stress due
to work load, deadlines etc and manage or deal with difficult people, being a good listener with the right attitude (It is
sometimes possible to have “I know it all attitude”, when you have strong technical skills. This can adversely affect your
ability to be a good listener, ability to look at things in a different perspective, ability to work well in a team and
consequently your progression in your career) etc. Some of these aspects are covered below and should be prepared for
prior to your job interview(s).

Q 76: Tell me about yourself or about some of the recent projects you have worked with? What do you consider your
most significant achievement? Why do you think you are qualified for this position? Why should we hire you and
what kind of contributions will you make? X&)

A 76: [Hint:] Pick your recent projects and enthusiastically brief on it. Interviewer will be looking for how passionate
you are about your past experience and achievements. Also is imperative that during your briefing, you
demonstrate on a high level(without getting too technical) how you applied your skills and knowledge in some of
the following key areas:

Design concepts and design patterns: How you understood and applied them.
Performance and memory issues: How you identified and fixed them.
Exception handling and best practices: How you understood and applied them.
Multi-threading and concurrent access: How you identified and fixed them.

84 Java — Personal and Behavioral/Situational
Some of the questions in this section can help you prepare your answers by relating them to your current or past
work experience. For example:
= Design Concepts: Refer Q7, Q8, Q9, Q10, Q11 etc
= Design Patterns: Refer Q12, Q16, Q24, Q36, Q51, Q52, Q58, Q61, and Q63 in Java section and Q11, Q12
in “How would you go about...?” section for a more detailed discussion.
= Performance issues: Refer Q25, Q72 etc
= Memory issues: Refer Q37, Q38, Q42, Q73, and Q74
= Exception Handling: Refer Q39, Q40 etc
= Multi-threading (Concurrency issues): Refer Q15, Q17, Q21, Q34, Q42 and Q46 etc
Demonstrating your knowledge in the above mentioned areas will improve your chances of being successful in
your Java/J2EE interviews. 90% of the interview questions are asked based on your own resume. So in my view it
is also very beneficial to mention how you demonstrated your knowledge/skills by stepping through a recent
project on your resume.
The two other areas, which | have not mentioned in this section, which are also very vital, are transactions and
security. These two areas will be covered in the next section, which is the Enterprise section (J2EE, JDBC, EJB,
JMS, SQL, XML etc).
Even if you have not applied these skills knowingly or you have not applied them at all, just demonstrating that you
have the knowledge and an appreciation will help you improve your chances in the interviews. Also mention any
long hours worked to meet the deadline, working under pressure, fixing important issues like performance issues,
running out of memory issues etc.
The job seekers should also ask questions to make an impression on the interviewer. Write out specific questions
you want to ask and then look for opportunities to ask them during the interview. For example:
= Do you have any performance or design related issues? = Succinctly demonstrate how you would go about
solving them or how you solved similar problems in your previous assignments.
= Do you follow any software development processes like agile methodology, XP, RUP etc? - Briefly
demonstrate your experience, understanding and/or familiarity with the development methodology of
relevance.
= Do you use any open source frameworks like Spring, Hibernate, Tapestry etc? Any build tools like Ant, Maven
etc, and testing tools like JUnit etc - briefly demonstrate your experience, understanding and/or familiarity
with the framework(s) of relevance.
Many interviewers end with a request to the applicant as to whether they have anything they wish to add. This is
an opportunity for you to end on a positive note by making succinct statements about why you are the best person
for the job by demonstrating your understanding of the key areas and how you applied them in your previous jobs.
Reflect back on your past jobs and pick two to five instances where you used your skills in the key areas
very successfully.
Q 77: Why are you leaving your current position? m
A 77: [Hint]
= Do not criticize your previous employer or co-workers or sound too opportunistic.
= |tis fine to mention a major problem like a buy out, budget constraints, merger or liquidation.
= You may also say that your chance to make a contribution is very low due to company wide changes or
looking for a more challenging senior or designer role.
Q 78: What do you like and/or dislike most about your current and/or last position? m
A 78: [Hint]

The interviewer is trying to find the compatibility with the open position. So
Do not say anything like:

= You dislike overtime.

Java — Personal and Behavioral/Situational 85

You dislike management or co-workers etc.
It is safe to say:

You like challenges.

Opportunity to grow into design, architecture, performance tuning etc

Opportunity to learn and/or mentor junior developers..

You dislike frustrating situations like identifying a memory leak problem or a complex transactional or a
concurrency issue. You want to get on top of it as soon as possible.

Q 79: How do you handle pressure? Do you like or dislike these situations? m
A 79: [Hint] These questions could mean that the open position is pressure-packed and may be out of control. Know
what you are getting into. If you do perform well under stress then give a descriptive example. High achievers tend
to perform well in pressure situations.
Q 80: What are your strengths and weaknesses? Can you describe a situation where you took initiative? Can you
describe a situation where you applied your problem solving skills? m
A 80: [Hint]
Strengths:
= Taking initiatives and being pro-active: You can illustrate how you took initiative to fix a transactional issue,
a performance problem or a memory leak problem.
= Design skills: You can illustrate how you designed a particular application using OO concepts.
= Problem solving skills: Explain how you will break a complex problem into more manageable sub-sections
and then apply brain storming and analytical skills to solve the complex problem. lllustrate how you went
about identifying a scalability issue or a memory leak problem.
= Communication skills: lllustrate that you can communicate effectively with all the team members, business
analysts, users, testers, stake holders etc.
= Ability to work in a team environment as well as independently: lllustrate that you are technically sound
to work independently as well as have the interpersonal skills to fit into any team environment.
= Hard working, honest, and conscientious etc are the adjectives to describe you.
Weaknesses:
Select a trait and come up with a solution to overcome your weakness. Stay away from personal qualities and
concentrate more on professional traits for example:
= | pride myself on being an attention to detail guy but sometimes miss small details. So | am working on
applying the 80/20 principle to manage time and details. Spend 80% of my effort and time on 20% of the
tasks, which are critical and important to the task at hand.
= Some times when there is a technical issue or a problem | tend to work continuously until | fix it without having
a break. But what | have noticed and am trying to practice is that taking a break away from the problem and
thinking outside the square will assist you in identifying the root cause of the problem sooner.
Q 81: What are your career goals? Where do you see yourself in 5-10 years? m
A 81: [Hint] Be realistic. For example

= Next 2-3 years to become a senior developer or a team lead.
= Next 3-5 years to become a solution designer or an architect.

Situational questions: The open-ended questions like last two questions are asked by interviewers to identify specific
characteristics like taking initiative, performance standards, accountability, adaptability, flexibility, sensitivity,
communication skills, ability to cope stress etc. These questions are known as behavioral or situational questions. This

86

Java — Personal and Behavioral/Situational

behavioral technique is used to evaluate a candidate’s future success from past behaviors. The answers to these
questions must describe in detail a particular situation like an event, a project or an experience and how you acted on that
situation and what the results were. Prepare your answers prior to the interview using the “Situation Action Result (SAR)”
approach and avoid fabricating or memorizing your answers. You should try to relate back to your past experiences at
your previous employments, community events, sporting events etc. Sample questions and answers are shown below:

Q 82:

A 82:

Give me an example of a time when you set a goal and were able to achieve it? Give me an example of a time you
showed initiatiative and took the lead? Tell me about a difficult decision you made in the last year? Give me an
example of a time you motivated others? Tell me about a most complex project you were involved in? [FX&

When you were working for the ZCC Software Technology Corporation, the overnight batch process
called the “Data Pacakager” was developed for a large fast food chain which has over 100 stores. This overnight
batch process is responsible for performing a very database intensive search and compute changes like cost of
ingredients, selling price, new menu item etc made in various retail stores and package those changes into XML
files and send those XML data to the respective stores where they get uploaded into their point of sale registers to
reflect the changes. This batch process had been used for the past two years, but since then the number of stores
had increased and so did the size of the data in the database. The batch process, which used to take 6-8 hours to
complete, had increased to 14-16 hours, which obviously started to adversely affect the daily operations of these
stores. The management assigned you with the task of improving the performance of the batch process to 5-6
hours (i.e. suppose to be an overnight process).

After having analyzed the existing design and code for the “Data Packager’, you had to take the
difficult decision to let the management know that this batch process needed to be re-designed and re-written as
opposed to modifying the existing code, since it was poorly designed. It is hard to extend, maintain (i.e. making a
change in one place can break the code some where else and so on) and had no object reuse through caching
(makes too many unnecessary network trips to the database) etc. The management was not too impressed with
this approach and concerned about the time required to rewrite this batch process since the management had
promised the retail stores to provide a solution within 8-12 weeks. You took the initiative and used your
persuasive skills to convince the management that you would be able to provide a re-designed and re-written
solution within the 8-12 weeks with the assistance of 2-3 additional developers and two testers. You were
entrusted with the task to rewrite the batch process and you set your goal to complete the task in 8 weeks. You
decided to build the software iteratively by building individual vertical slices as opposed to the big bang waterfall
approach [Refer subsection “Enterprise — Software development process” in Enterprise — Java section]. You
redesigned and wrote the code for a typical use case from end to end (i.e. full vertical slice) within 2 weeks and
subsequently carried out functional and integration testing to iron out any unforeseen errors or issues. Once the
first iteration is stable, you effectively communicated the architecture to the management and to your fellow
developers. Motivated and mentored your fellow developers to build the other iterations, based on the first
iteration. At the end of iteration, it was tested by the testers, while the developers moved on to the next iteration.

After having enthusiastically worked to your plan with hard work, dedication and teamwork, you were
able to have the 90% of the functionality completed in 9 weeks and spent the next 3 weeks fixing bugs, tuning
performance and coding rest of the functionality. The fully functional data packager was completed in 12 weeks
and took only 3-4 hours to package XML data for all the stores. The team was under pressure at times but you
made them believe that it is more of a challenge as opposed to think of it as a stressful situation. The newly
designed data packager was also easier to maintain and extend. The management was impressed with the
outcome and rewarded the team with an outstanding achievement award. The performance of the newly
developed data packager was further improved by 20% by tuning the database (i.e. partitioning the tables,
indexing etc).

Q 83:

A 83:

Describe a time when you were faced with a stressful situation that demonstrated your coping skills? Give me an
example of a time when you used your fact finding skills to solve a problem? Describe a time when you applied
your analytical and/or problem solving skills?

When you were working for the Surething insurance corporation pty Itd, you were responsible for the
migration of an online insurance application (i.e. external website) to a newer version of ap